Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T14:22:21.495Z Has data issue: false hasContentIssue false

Copper Oxidation Studied by In Situ Raman Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Robert Schennach
Affiliation:
Institute of Solid State Physics, Graz University of Technology, Graz, Austria
Andreas Gupper
Affiliation:
Research Institute for Electron Microscopy, Graz University of Technology, Graz, Austria
Get access

Abstract

The growing importance of copper in the semiconductor industry has led to a renewed interest in the properties and growth modes of copper oxides under a variety of conditions. While thermal oxidation of copper has been studied extensively over the last decades, recent surface studies seem to ignore the possible formation of Cu3O2. It has been shown earlier that thermal oxidation of copper leads to multilayer structures, which consist of CuxO, Cu2O, Cu3O2 and CuO, depending on the oxidation conditions. These oxides were analysed ex situ using X-ray Photoelectron Spectroscopy (XPS) combined with depth profiling, Linear Sweep Voltammetry (LSV) and Galvanostatic Reduction (GR). In this work it will be shown that Raman Spectroscopy can be used to follow the formation of the different copper oxides in situ. The experiments were performed using a Raman Microscope with a sample heating extension, which enables in situ copper oxidation in air between room temperature and 300 Δ. Raman spectra were acquired in the range between 3000 Δcm-1 to 150 cm-1. From these spectra one can see that Cu20 is formed between 70 Δ and 130 Δ, Cu302 is formed between 150 Δ and 250 Δ and CuO starts to form at temperatures higher than 250 Δ.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Apen, E., Rogers, B. R. and Sellers, J. A., J. Vac. Sci Technol. 16 (1998) 1227.Google Scholar
[2] Li, J., Mayer, J.W. and Colgan, E. G., J. Appl. Phys. 70 (1991) 2820.Google Scholar
[3] Rauh, M. and Wissmann, P., Thin Solid Films 228 (1993) 121.Google Scholar
[4] Hono, K., Pickering, H., Hashizume, T., Kamiya, I. and Sakurai, T., Sur. Sci. 213 (1989) 90.Google Scholar
[5] Garcia-Cantu, R., Alvarado, J. J. and Solorza, O., J. Microsc. 171 (1993) 167.Google Scholar
[6] Cocke, D. L., Chuah, G. K., Kruse, N. and Block, J.H., Appl. Surf. Sci. 84 (1995) 153161.Google Scholar
[7] Machefert, J. M., Lenglet, M., Blavette, D., Menard, A. and D'Huysser, A., “Structure and Reactivity of Surfaces” (Elsevier, 1989) 625.Google Scholar
[8] Barr, T., J. Phys. Chem. 82 (1978) 1801.Google Scholar
[9] Yoon, C. and Cocke, D. L., Appl. Surf. Sci. 31, (1988) 118.Google Scholar
[10] Yoon, C. H. and Cocke, D. L., J. Electrochem. Soc. 134 (1987) 643.Google Scholar
[11] Streblow, H. and Titze, B., Electrochim. Acta 25 (1980) 839.Google Scholar
[12] Raikar, G. N., Gregory, J. C. and Peters, P.N., Oxid. Metals 42 (1994) 1.Google Scholar
[13] Lenglet, M., Kartouni, K., Machefert, J., Claude, J. M., Steinmetz, P., Beauprez, E., Heinrich, J. and Celati, N., Mat. Res. Bull. 30 (1995) 393.Google Scholar
[14] Lefez, B., Kartouni, K., Lenglet, M., Ronnow, D. and Ribbing, C. G., Surf. & Interface Anal. 22 (1994) 451.Google Scholar
[15] Lenglet, M., Kartouni, K. and Delehaye, D., J. Appl. Electrochem. 21 (1991) 697.Google Scholar
[16] Weider, H.; Czanderna, A. W. J. Phys. Chem. 28, 1962, 816821.Google Scholar
[17] Clarke, E. G. and Czanderna, A. W., Surf. Sci. 49 (1975) 529.Google Scholar
[18] Hapse, M. G., Gharpurey, M. K. and Biswas, A. B., Surf. Sci. 9 (1968) 87.Google Scholar
[19] , Neumeister and Jaenicke, W., Z. Phys Chem. Neue Folge 108 (1978) 217.Google Scholar
[20] Czanderna, A. W. and Wieder, H. in Vacuum Microbalance Techniques, edited by Walker, R. F., (Plenum Press, 1962), Vol. 2, pp. 147164.Google Scholar
[21] Suzuki, S., Ishikawa, Y., Isshiki, M. and Wsaeda, Y., Materials Transactions JIM, 38 (1997) 1004.Google Scholar
[22] Bubert, H. and Appel, T., J. Microscoy Society of America 2 (1996) 35.Google Scholar
[23] Niaura, G., Electrochimica Acta 45 (2000) 3507.Google Scholar
[24] Xu, J. F., Ji, W., Shen, Z. X., Tang, S. H., Ye, X. R., Jia, D. Z. and Xin, X.Q, J. Solid State Chem. 147 (1999) 516.Google Scholar
[25] H. Chan, H. Y., Takoudis, C. G. and Weaver, M. J., Electrochem. And Solid State Lett. 2 (4) (1999) 189.Google Scholar
[26] Texier, F., Servant, L., Bruneel, J. L. and Argoul, F., J. Electroanal. Chem. 446 (1998) 189.Google Scholar
[27] Mayer, S. T. and Muller, R. H., J. Electrochem. Soc. 139 (2) (1992) 426.Google Scholar
[28] Hamilton, J. C., Farmer, J. C. and Anderson, R. J., J. Electrochem. Soc. 133 (4) (1986) 739.Google Scholar
[29] Kilo, M, Schild, C., Wokaun, A. and Baiker, A., J. Chem. Soc. Faraday Trans. 88 (10) (1992) 1453.Google Scholar