Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T19:03:37.272Z Has data issue: false hasContentIssue false

Control of Isotropic and Anisotropic Etching and Surface Cleaning of Silicon and Silicon Dioxide in a Hydrogen Plasma

Published online by Cambridge University Press:  22 February 2011

S. Veprek
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching-Munich, Federal Republic of Germany
Ch. Wang
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching-Munich, Federal Republic of Germany
G. Ratz
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstrasse 4, D-8046 Garching-Munich, Federal Republic of Germany
Get access

Abstract

We present data on the temperature dependence of the etch rate of silicon and silicon dioxide in order to elucidate optimum conditions for the selective oxygen removal from the silicon surface. Both, the etching temperature and ion bombardment have a pronounced influence on the surface morphology. The conditions yielding a minimum surface roughness will be presented. A careful control of the oxygen impurities of the hydrogen plasma in the range between about 1–3 ppm and 60 ppm allow us to control the degree of anisotropy of etching of patterned silicon wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Raynauld, P., Booth, J.P. and Pomot, C., Appl. Surf. Sci. 46, 439 (1990)Google Scholar
[2] Ishii, M., Nakashima, K., Tajima, I. and Yamamoto, M., Appl. Phys. Lett. 58, 1378 (1991)Google Scholar
[3] Anthony, B., Breaux, L., Hsu, T., Banerjee, S. and Tasch, A., J. Vac. Sci. Technol. B7, 621 (1989)Google Scholar
[4] Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S. and Tasch, A., J. Electronic Mater. 19, 1027 (1990)Google Scholar
[5] Okada, Y., Shimomura, H., Sugaya, T. and Kawabe, M., Jap. J. Appl. Phys. 30, 3774 (1991)Google Scholar
[6] Hsu, T., Anthony, B., Qian, R., Irby, J., Kinosky, D., Mahajan, A., Banerjee, S., Magee, C. and Tasch, A.., J. Electronic Mater. 21, 65 (1992)Google Scholar
[7] Delfino, M., Salimian, S., Hodul, D., Ellingboe, A. and Tsai, W., J. Appl. Phys. 71, 1001 (1992)Google Scholar
[8] Ramm, J., Beck, E. and Züger, A., Mater. Res. Soc. Proc. 220, 15 (1991)Google Scholar
[9] Ramm, J., Beck, E., Steiner, F.-P., Pixley, R.-E. and Eisele, I., MRS Spring Meeting, Symp. B, San Francisco 1992, Mater. Res. Soc. Proc, in pressGoogle Scholar
[10] Veprek, S. and Marecek, V., Solid State Commun. 11, 683 (1968)Google Scholar
[11] Webb, A.P. and Veprek, S., Chem. Phys. Lett. 62, 173 (1979)Google Scholar
[12] Veprek, S. and Sarott, F.-A., Plasma Chem. Plasma Processing 2, 233 (1982)Google Scholar
[13] Abrefah, J. and Olander, D.R. Surf. Sci. 208, 291 (1989)Google Scholar
[14] Gates, M., Kunz, R.R. and Greenlief, C.M., Surf. Sci. 207, 364 (1989)Google Scholar
[15] Arend, H. and Veprek, S., Kristall und Technik 3, 41 (1968)Google Scholar
[16] Veprek, S. and Webb, A.P., Proc. 4th Int. Symp. on Plasma Chem., Zürich 1979, p. 79 Google Scholar
[17] McTaggart, F.K., Plasma Chemistry in Electrical Discharges Elsevier, Amsterdam (1967)Google Scholar
[18] Veprek, S., Sarott, F.-A., Rambert, S. and Taglauer, E., J. Vac. Sci. Technol. A7, 2614 (1989)Google Scholar
[19] Veprek, S., Ratz, G., Meindl, K. and Möller, W., Mater. Res. Soc. Proc. 201, 19 (1991)Google Scholar
[20] Veprek, S., Proc. Mater. Res. Soc. Europe, Strassbourg 1984, eds. Pinard, P. and Kalbitzer, A., Les éditions de physique, Les Ullis (1984), p. 425 Google Scholar