Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T10:43:07.412Z Has data issue: false hasContentIssue false

Contactless Characterization of The Surface Condition of Sulfur-Treated Semi-Insulating GaAs

Published online by Cambridge University Press:  21 February 2011

Hiroyuki Shiraki
Affiliation:
Mitsubishi Materials Corporation, Omiya, Saitama 330, JAPAN
Akira Lto
Affiliation:
Nagoya Institute of Technology*, Gokiso, Showa, Nagoya 466, JAPAN
Akira Usami
Affiliation:
Nagoya Institute of Technology*, Gokiso, Showa, Nagoya 466, JAPAN
Masaya Ichimura
Affiliation:
Nagoya Institute of Technology*, Gokiso, Showa, Nagoya 466, JAPAN
Takao Wada
Affiliation:
Nagoya Institute of Technology*, Gokiso, Showa, Nagoya 466, JAPAN
Get access

Abstract

We apply the reflectance microwave probe (RMP) method to characterize the surface condition of the sulfur-treated GaAs. Undoped semi-insulating GaAs wafers are dipped in (NH4)2S or (NH4)2Sx [1<x≦3] after an etching. The intensity of the reflected microwave under He-Ne laser (λ=633nm) irradiation is proportional to the excess carrier density, which strongly depends on the surface condition. The (NH4)2Sx treatment increases the RMP signal intensity, while no significant change in the signal intensity is observed after the (NH4)2S treatment. The signal intensity of the (NH4)2Sx-treated samples is decreased by the annealingyhe results observed in this study are consistent with those previously found with other measurement methods. This method will be able to in-situ evaluate the surface condition of GaAs during the device fabrication process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Sandroff, C.J., Nottenburg, R.N., Bischoff, J.C-., and Bhat, R., Appl.Phys.Lett. 51, 33 (1987)Google Scholar
(2) Hasegawa, H., Ishii, H., Sawada, T., Sitoh, T., Konishi, S., Liu, Y., and Ohno, H., J.Vac.Sci.Technol. B6, 1184 (1988)Google Scholar
(3) Spindt, C.J., Liu, D., Miyano, K., Meissner, P.L., Chiang, T.T., Kendelwicz, T., Lindau, I., and Spicer, W.E., Appl.Phys.Lett. 55, 861 (1989)Google Scholar
(4) Besser, R. and Helms, C.R., J.Appl.Phys. 65, 4306 (1989)Google Scholar
(5) Ohno, T., Phys.Rev.B 44, 6306 (1991)CrossRefGoogle Scholar
(6) Nannichi, Y., Fan, J.F., Oigawa, H., and Koma, A., Jpn.J.Appl.Phys. 27, L2367 CrossRefGoogle Scholar
(7) Liu, D., Zhang, T., LaRue, R.A., Harris, J.S. Jr., and Sigmon, T.W., Appl.Phys.Lett. 53, 1059 (1988)Google Scholar
(8) Samaras, J.E. and Darling, R.B., J.Appl.Phys. 72, 168 (1992)Google Scholar
(9) Yablonvitch, E., Sandroff, C.J., Bhat, R., and Gmiter, T., Appl.Phys.Lett 51, 439 (1987)Google Scholar
(10) Iyer, R., Chang, R.R., and Lile, D.L., Appl.Phys.Lett. 53, 134 (1988)Google Scholar
(11) Tao, Y., Yelon, A., and Sacher, E., Lu, Z.H., and Graham, M.J., Appl.Phys.Lett. 60, 2669 (1992)Google Scholar
(12) Iyer, R. and Lile, D.L., Appl.Phys.Lett. 60, 754 (1992)Google Scholar
(13) Usami, A., Proc.IEEE 1991 Int.Conference on Microelectronic Test Structures 4, 1 (1991)Google Scholar
(14) Usami, A., Kitagawa, A., and Wada, T., Appl.Phys.Lett. 54, 831 (1989)Google Scholar
(15) Usami, A., Ito, A., Tokuda, Y., Kano, H., and Wada, T., J.Cryst.Growth 103, 350 (1990)Google Scholar
(16) Ito, A., Usami, A., and Wada, T., J.Appl.Phys. 71, 4088 (1992)Google Scholar