Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-13T20:33:05.782Z Has data issue: false hasContentIssue false

Conjugated Polymer Based Nanocomposites for Photonics Applications

Published online by Cambridge University Press:  10 February 2011

P. N. Prasad
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York At BuffaloBuffalo, NY 14260-3000
N. Deepak Kumar
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York At BuffaloBuffalo, NY 14260-3000
Manjari Lal
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York At BuffaloBuffalo, NY 14260-3000
Mukesh P. Joshi
Affiliation:
Photonics Research Laboratory, Department of ChemistryState University of New York At BuffaloBuffalo, NY 14260-3000
Get access

Abstract

Nanoscale synthesis and processing provides a novel approach for making a new generation of nanocomposite materials with exceptional optical and electrical properties that are needed for the development of new technologies. This presentation will focus on the preparation of nanocomposites made of Poly (para-phenylene vinylene) (PPV) with other polymers, inorganic glasses and semiconductors. We will present a new approach of nanoscale polymerization for making processable monodispersed oligomeric species of PPV which uses the base catalyzed polymerization of PPV monomer within the cavity of a reverse micelle nanoreactor. Application of this approach of fabricating novel materials for a variety of applications in photonics will also be discussed. In addition, we will discuss fabrication of bulk nanocomposites of PPV and silica by insitu polymerization of monomer within a porous glass and their lasing properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Braun, D., Heeger, A., Appl. Phys. Lett. 58, 1982 (1991).10.1063/1.105039Google Scholar
2. Ohmori, Y., Uchida, M., Muro, K., Yoshino, K., Solid State Commun. 80, 605(1991).Google Scholar
3. Ohmori, Y., Uchida, M., Yoshino, K., Jpn. J. Appl. Phys. 30, L1941(1991).Google Scholar
4. Lal, Manjari, Kumar, N. Deepak, Joshi, Mukesh P. and Prasad, P. N., Chem Mater., accepted for publication.Google Scholar
5. Murase, I., Ohnishi, T., Noguchi, T., Hirooka, M., Poly. Commun. 25, 327(1985); F. E. Karasz, J. D. Capistran, D. R. Gagnon, R. W. Lenz, Mol. Cryst. Liq. Cryst. 118, 327(1985); D. D. C. Bradley, J.Phys. D. 20, 1387(1987).Google Scholar
6. Pileni, M. P., J. Phys. Chem. 97, 6961(1993).Google Scholar
7. Braun, D., Gustafsson, G., McBranch, D and Heeger, A. J., J. Appl. Phys 72, 564(1992).Google Scholar
8. Kido, J., Kohda, M., Okuyama, K. and Nagai, K., Appl. Phys. Lett. 61, 761(1992).Google Scholar
9. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature (London) 370, 354(1994).Google Scholar
10. Kumar, N. Deepak, Joshi, Mukesh P., Friend, Christopher S., Prasad, P. N. and Burzynski, Ryszard, Appl. Phys. Lett. 71,1388 (1997).Google Scholar
11. Tang, C. W., Information Display 12, 16 (1996).Google Scholar
12. Moses, D., Appl. Phys. Lett. 60, 3215 (1992).Google Scholar
13. Hide, F., Schwartz, B. J., Diaz-Garcfa, M. A., and Heeger, A. J., Chem. Phys. Lett. 256, 424 (1996).Google Scholar
14. Wung, C. J., Pang, Y., Prasad, P. N., and Karasz, F. E., Polymer 32, 605 (1991).Google Scholar
15. Faraggi, E. Z., Sorek, Y., Levi, O., Avny, Y., Davidov, D., Neumann, R., and Reisfeld, R., Advanced Materials 8, 833 (1996).Google Scholar
16. Herold, M., Gmeiner, J., Reib, W., and Schwoerer, M., Synthetic metals 76, 109 (1996).Google Scholar
17. Kumar, N. Deepak, Bhawalkar, J. D., and Prasad, P. N., Appl. Opt., accepted for publication.Google Scholar