Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T15:09:24.681Z Has data issue: false hasContentIssue false

Computer Simulation of the Effect of Copper on Defect Production and Damage Evolution in Ferritic Steels

Published online by Cambridge University Press:  15 February 2011

J. M. Perlado
Affiliation:
Instituto de Fusión Nuclear (DENIM), Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal, 2, 28006-Madrid, Madrid, Spain, jaime@denim.upm.es
J. Marian
Affiliation:
Instituto de Fusión Nuclear (DENIM), Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal, 2, 28006-Madrid, Madrid, Spain, jaime@denim.upm.es
D. Lodi
Affiliation:
Instituto de Fusión Nuclear (DENIM), Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal, 2, 28006-Madrid, Madrid, Spain, jaime@denim.upm.es
T. Díaz De La Rubia
Affiliation:
Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, L–268, Livermore, CA 94550
Get access

Abstract

It has long been noticed that the effect of Cu solute atoms is important for the microstructural evolution of ferritic pressure vessel steels under neutron irradiation conditions. Despite the low concentration of Cu in steel, Cu precipitates form inside the α-Fe surrounding matrix and by impeding free dislocation motion considerably contribute to the hardening of the material. It has been suggested that Cu-rich clusters and combined Cu solute atoms-defect clusters that may act as initiating structures of further precipitates nucleate during annealing of displacement cascades. In order to assess the importance of the different mechanisms taking place during collision events in the formation and later evolution of these structures, a detailed Molecular Dynamics (MD) analysis of displacement cascades in a Fe-1.3% at. Cu binary alloy has been carried out. Cascade energies ranging from 1 to 20 keV have been simulated at temperatures of 100 and 600 K using the MDCASK code, in which the Ackland-Finnis-Sinclair many-body interatomic potential has been implemented. The behaviour of metastable Cu selfinterstitial atoms (SIAs) in the form of mixed Fe-Cu features is studied as well as their impact on the resulting defect structures. It is observed that above 300 K generated Cu SIAs undergo recombination with no substantial effect on the after-cascade microstructure while at 100 K Cu SIAs remain sessile and exhibit a considerable binding to interstitial and vacancy clusters. Finally, the effect that the production of vacancies via collision cascades may have on the self diffusion of Cu solute atoms is quantitatively addressed by means of determining diffusion coefficients for Cu atoms under different microstructural conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lucas, G. E., Odette, G. R., Maiti, R. and Sheckherd, J. W. in Influence of Radiation on Materials Properties.: 13th International Symposiumn, Part II, edited by Garner, F. A., Genager, C. H. and Igata, N. (ASTM-STP 956, ASTM, Philadelphia, PA, 1987) p. 379 Google Scholar
[2] Fisher, S. B. and Buswell, J. T., Int. J. Pressure Vessel Piping 27, 91 (1987)Google Scholar
[3] Odette, G. R. in Microstructure of Irradiated Materials, edited by Robertson, I. M., Rehn, L. E., Zinkle, S. J. and Phytian, W. J. (Mater. Res. Soc. Proc. 373, Pittsburgh, PA, 1995) p. 137 Google Scholar
[4] Buswell, J. T., Bischler, P. J., Fenton, S. T., Ward, A. C. and Phytian, W. J., J. Nucl. Mater. 205, 198 (1993)Google Scholar
[5] Rice, P. M. and Stoller, R. E., J. Nucl. Mater. 244, 219 (1997)Google Scholar
[6] Worrall, G. M., Buswell, J. T., English, C. A., Hetherington, M. G. and Smith, G. D., J. Nucl. Mater. 148, 107 (1987)Google Scholar
[7] Nicol, A. C., Jenkins, M. L. and Kirk, M. A. in: Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 409 Google Scholar
[8] Soisson, F., Barbu, A. and Martin, G., Acta Mater. 44, 3789 (1996)Google Scholar
[9] Liu, C. L., Odette, G. R., Wirth, B. D. and Lucas, G. E., Mat. Sci. Eng. A 238, 202 (1997)Google Scholar
[10] Wirth, B. D. and Odette, G. R. in: Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 637 Google Scholar
[11] Domain, C., Becquart, C. S., Van, J. C. Duysen in Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 643 Google Scholar
[12] Odette, G. R. and Wirth, B. D., J. Nucl. Mater. 251, 157 (1997)Google Scholar
[13] , T. N., Barbu, A., Liu, D. and Maury, F., Scripta Metall. 26, 771 (1992)Google Scholar
[14] Rubia, T. Díaz de la and Guinan, M. W., Mater. Res. Forum 97–99, 23 (1992)Google Scholar
[15] Calder, A. F. and Bacon, D. J., J. Nucl. Mater. 207, 25 (1993)Google Scholar
[16] Bacon, D. J. and Rubia, T. Diaz de la, J. Nucl. Mater. 216, 275 (1994)Google Scholar
[17] Deng, H. F. and Bacon, D. J., Phys. Rev. B 53, 11376 (1996)Google Scholar
[18] Ackland, G. J., Bacon, D. J., Calder, A. F. and Harry, T., Philos. Mag. A 75, 713 (1997)Google Scholar
[19] Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984)Google Scholar
[20] Rubia, T. Diaz de la and Guinan, M. W., Mater. Res. Forum 174, 151 (1990)Google Scholar
[21] Wriedt, H. A. and Darken, L. S., Trans. Metals. Soc. AIME 218, 30 (1960)Google Scholar
[22] Gao, F. and Bacon, D. J., Phil. Mag. A, 71, 65 (1995)Google Scholar
[23] Johnson, R. A. and Oh, D. J., J. Mater. Res. 4, 1195 (1989)Google Scholar
[24] Stoller, R. E. in: Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 679 Google Scholar