Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T17:02:22.764Z Has data issue: false hasContentIssue false

Complementary Experimental Techniques for Multi-Scale Modeling of Plasticity

Published online by Cambridge University Press:  15 February 2011

L. E. Levine
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
G. G. Long
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
D. R. Black
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

Some recently-developed experimental techniques, such as in situ ultra-small-angle Xray scattering (USAXS), have demonstrated a capability for measuring aspects of dislocation structure evolution that are inaccessible to other experimental methods. However, no single technique can provide the entire range of information required by theoretical and computational researchers. It is only through the synergy of several experimental techniques (such as USAXS, transmission electron microscopy, and X-ray diffraction imaging) that much of the required quantitative information can be obtained. Ultimately, the development of additional new experimental techniques will also be required.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kubin, L. P. and Canova, G., Scripta Metall., 27, 957 (1992).Google Scholar
2 Zbib, H. M., Rhee, M., and Hirth, J. P., in “Advances in Engineering Plasticity and Its Applications,” Ed. Abe, T. and Tsuta, T., Pergamon, Oxford, 15 (1996).Google Scholar
3 Schwarz, K. W., J. Appl. Phys., 85, 108 (1999).Google Scholar
4 Zaiser, Michael and Hähner, Peter, Phil. Mag. Lett., 73, 369 (1996).Google Scholar
5 Hähner, Peter, Bay, Karlheinz, and Zaiser, Michael, Phys. Rev. Lett., 81, 2470 (1998).Google Scholar
6 Thomson, R. and Levine, L. E., Phys. Rev. Lett., 81, 3884 (1998).Google Scholar
7 Bakó, B. and Groma, I., Phys. Rev. B, 60, 122 (1999).Google Scholar
8 Portevin, A. and Chatelier, F. Le, C. R. Acad. Sci. Paris, 176, 507 (1923).Google Scholar
9 Mertens, F., Scott Franklin, V., and Marder, M., Phys. Rev. Lett., 78, 4502 (1997).Google Scholar
10 Hähner, P., Acta Mater., 45, 3695 (1997).Google Scholar
11 Sutton, A. P. and Balluffi, R. W., “Interfaces in Crystalline Materials,” Clarendon Press, Oxford, 704 (1995).Google Scholar
12 Kubin, L., in “Treatise in Materials Science and Technology,” Vol. 6, Ed. Cahn, R. W., Haasen, P. and Kramer, E. L., VCH-Weinberg (1993).Google Scholar
13 Sevillano, J. Gil, in “Treatise in Materials Science and Technology”, Vol. 6, Ed. Cahn, R. W., Haasen, P. and Kramer, E. L., VCH-Weinheim (1993).Google Scholar
14 Argon, A., in “Physical Metallurgy”, Ed. Cahn, R. W. and Haasen, P., Pergamon, New York (1997).Google Scholar
15 Kullman-Wilsdorf, D., Mat. Res. Innovat., 1, 265 (1998).Google Scholar
16 Zhou, S. J., Preston, D. L., Lorndahl, P. S., and Beazley, D. M., Science, 279, 1525 (1998).Google Scholar
17 Rodney, D. and Phillips, R., Phys. Rev. Lett., 82, 1704 (1999).Google Scholar
18 Wickham, L. K., Schwarz, K. W., and Stolken, J. S., unpublishedGoogle Scholar
19 Chung, J. S. and Ice, G. E., J. Appl. Cryst., 86, 5249 (1999).Google Scholar
20 Levine, L. E., Allen, A. J., and Gnaupel-Herold, Thomas, unpublished.Google Scholar
21 Moriarty, J. A., Phys. Rev. B, 42, 1609 (1990).Google Scholar
22 Moriarty, J. A., Phys. Rev. B, 49, 12431 (1994).Google Scholar
23 Xu, W. and Moriarty, J. A., Phys. Rev. B, 54, 6941 (1996).Google Scholar
24 Campbell, Geoffrey H., Wien, Walter L., King, Wayne E., Foiles, Stephen M., and Ruhle, Manfred, Ultramicroscopy, 51, 247 (1993).Google Scholar
25 Mills, Michael J. and Stadelmann, Pierre, Phil. Mag. A, 60, 355 (1989).Google Scholar
26 Mills, Michael J., Daw, Murray S., and Foiles, Stephen M., Ultramicroscopy, 56, 79 (1994).Google Scholar
27 Holian, Brad Lee and Lomdahl, Peter S., Science, 280, 2085 (1998).Google Scholar
28 Schwarz, K. W., J. Appl. Phys., 85, 120 (1999).Google Scholar
29 LeGoues, F. K., unpublished.Google Scholar
30 Devincre, B. and Kubin, L. P., Mod. Simul. Mater. Sci. Eng., 2, 559 (1994).Google Scholar
31 Foecke, T. and vanHeerden, D., in “Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials,” Ed. Ma, E., Fultz, B., Shull, R., Morral, J., and Nash, P., TMS, Pittsburgh, 193, (1997).Google Scholar
32 Ham, R. K., Phil. Mag 7, 1177 (1962). 741 (1980).Google Scholar
33 Seeger, A., The Relation Between Structure and Mechanical Properties of Metals 1, H.M.S.O., London, p. 3 (1963).Google Scholar
34 Hirsch, P. B., The Relation Between Structure and Mechanical Properties of Metals 1, H.M.S.O., London, p. 39 (1963).Google Scholar
35 Mader, Siegfried, Seeger, Alfred, and Thieringer, Hans-Martin, J. Appl. Phys., 34, 3376 (1963).Google Scholar
36 Basinski, Z. S., Discuss. Faraday Soc. 38, 93 (1964).Google Scholar
37 Steeds, J. W., Proc. Roy. Soc. A292, 343 (1966).Google Scholar
38 Göttler, E., Phil. Mag. 28, 1057 (1973).Google Scholar
39 Prinz, F. and Argon, A. S., Phys. Stat. Sol. A57, 741 (1980).Google Scholar
40 Young, C. T., Headley, T. J., Lytton, J. L., Mater. Sci. Eng. 81, 391 (1986).Google Scholar
41 Hughes, D. A., Acta Met. et Mater. 41, 1421 (1996).Google Scholar
42 Young, F. W. Jr., J. Appl. Phys. 32, 192 (1961).Google Scholar
43 Alers, G. A and Salama, K., Dislocation Dynamics, Ed. Ronsenfield, A. R., Hahn, G. T., Bement, A. L. Jr., and Jaffee, R. I., McGraw-Hill, Inc., New York, 211 (1968).Google Scholar
44 Bueren, H. G. Van, Imperfections in Crystals, North-Holland Publishing Company, Amsterdam, Chapter VI (1961).Google Scholar
45 Bueren, H. G. Van, Imperfections in Crystals, North-Holland Publishing Company, Amsterdam, Chapter XV (1961).Google Scholar
46 Reno, R. C., Swartzendruber, L. J., and Bennett, L. H., NDT International, October, 224 (1979).Google Scholar
47 Hashimoto, Eiji, Ueda, Yoshitake, Uematsu, Nobuyuki, Iwami, Masayuki, and Kino, Takao, J. Phys. Soc. Japan 61, 3799 (1992).Google Scholar
48 Wilkens, M., Phys. Status Solidi, A2, 359 (1970).Google Scholar
49 Krivoglaz, M. A., X-ray and Neutron Diffraction in Nonideal Crystals, Springer, Berlin (1996).Google Scholar
50 Levine, L. E. and Thomson, Robb, Acta Cryst., A53, 590 (1997).Google Scholar
51 Mughrabi, H., Ungár, T., Kienle, W., and Wilkens, M., Phil. Mag. A53, 793 (1986).Google Scholar
52 Ungár, T., Mat. Sci. For. 166–169, 23 (1994).Google Scholar
53Direct Observation of Imperfections in Crystals,” Ed. by Newkirk, J. B. and Wer-nick, J. H., Interscience Publishers, New York (1961).Google Scholar
54 Bowen, D. Keith and Tanner, Brian K., “High Resolution X-ray Diffractometry and Topography,” Taylor & Francis, London (1998).Google Scholar
55 Steiner, Bruce, Levine, L. E., Cull, T. C. and Ray, C. S., J. Non-Cryst. Sol. 204, 13 (1996).Google Scholar
56 Thomson, Robb, Levine, L. E., and Long, G. G., Acta Cryst. A55, 433 (1999).Google Scholar
57 Long, G. G., Levine, L. E., and Thomson, Robb, J. Appl. Cryst., in press.Google Scholar
58 Levine, L. E., Long, G. G., and Thomson, Robb, submitted to Phys. Rev. B (1999).Google Scholar
59 Argon, A. S. and Haasen, P., Acta metall. mater. 41, 3289 (1993).Google Scholar
60 Mughrabi, H., in “Continuum Models of Discrete Systems 4,” Ed. by Brulin, O. and Hsieh, R. K. T., North-Holland Pub. Comp. (1981).Google Scholar
61 Hughes, D. A., Liu, Q., Chrzan, D. C., and Hansen, N., Acta mater. 45, 105 (1997).Google Scholar
62 Prinz, F., Argon, A. S., and Moffett, W. C., Acta metall., 30, 821 (1982).Google Scholar
63 Alden, T. H., Rev. Sci. Instr., 31, 897 (1960).Google Scholar
64 Levine, L. E. and Fields, R. J., NISTIR 5867, U. S. Department of Commerce, National Institute of Standards and Technology (1996).Google Scholar
65 Haruta, Kyoichi, J. Appl. Phys., 76, 1789 (1965).Google Scholar
66 Warren, B. E., “X-ray Diffraction,” Dover, Mineola, N. Y., 19 (1990).Google Scholar
67 Long, G. G., Allen, A. J., Ilavsky, J., Jemian, P. R., and Zschack, P., Abstracts for Synchrotron Radiation Instrumentation (SRI-XI), Stanford, CA, 44 (1999).Google Scholar
68 Long, G. G., Jemian, P. R., Weertman, J. R., Black, D. R., Burdette, H. E., and Spal, R., J. Appl. Cryst., 24, 30 (1991).Google Scholar