Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T11:38:45.354Z Has data issue: false hasContentIssue false

Comparison Study of Structural and Optical Properties of InxGa1-xN/GaN Quantum Wells with Different in Compositions

Published online by Cambridge University Press:  03 September 2012

Yong-Hwan Kwon
Affiliation:
Center for Laser and Photonics Research and Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, e-mail: kwonyh@okstate.edu
G. H. Gainer
Affiliation:
Center for Laser and Photonics Research and Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
S. Bidnyk
Affiliation:
Center for Laser and Photonics Research and Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
Y. H. Cho
Affiliation:
Center for Laser and Photonics Research and Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
J. J. Song
Affiliation:
Center for Laser and Photonics Research and Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078
M. Hansen
Affiliation:
Electrical and Computer Engineering and Materials Departments, University of California, Santa Barbara, California 93106
S. P. Denbaars
Affiliation:
Electrical and Computer Engineering and Materials Departments, University of California, Santa Barbara, California 93106
Get access

Abstract

The effect of In on the structural and optical properties of InxGa1−xN/GaN multiple quantum wells (MQWs) was investigated. These were five-period MQWs grown on sapphire by metalorganic chemical vapor deposition. Increasing the In composition caused broadening of the high-resolution x-ray diffraction superlattice satellite peak and the photoluminescence-excitation bandedge. This indicates that the higher In content degrades the interface quality because of nonuniform In incorporation into the GaN layer. However, the samples with higher In compositions have lower room temperature (RT) stimulated (SE) threshold densities and lower nonradiative recombination rates. The lower RT SE threshold densities of the higher In samples show that the suppression of nonradiative recombination by In overcomes the drawback of greater interface imperfection.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
2. Song, J. J. and Shan, W., Gallium Nitride and Related Semiconductors, Edgar, J. H., Ed. (Oxford University Press, London, 1999), p.596.Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., and Nukai, T., Appl. Phys. Lett. 68, 3286 (1996); 69, 1477 (1996); 69, 3034 (1996); 69, 4056 (1996).Google Scholar
4. Chichibu, S. F., Abare, A. C., Minsky, M. S., Keller, S., Fleisher, S. B., Bowers, J. E., Hu, E., Mishra, U. K., Coldren, L. A., Denbaars, S. P., and Sota, T., Appl. Phys. Lett. 73, 2006 (1998).Google Scholar
5. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
6. Narukawa, Y., Saijou, S., Kawakami, Y., Fujita, S., Mukai, T., and Nakamura, S., Appl. Phys. Lett. 74, 558 (1999).Google Scholar
7. Keller, S., Abare, A. C., Minsky, M. S., Wu, X. H., Mack, M. P., Speck, J. S., Hu, E., Coldren, L. A., Mishra, U. K., and Denbaars, S. P., Material Science Forum 264–268, 1157 (1998).Google Scholar
8. Cho, Y. H., Song, J. J., Keller, S., Minsky, M. S., Hu, E., Mishra, U. K., and Denbaars, S. P., Appl. Phys. Lett. 73, 1128 (1998).Google Scholar
9. Bidnyk, S., Schmidt, T. J., Cho, Y. H., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and Denbaars, S. P., Appl. Phys. Lett. 72, 1623 (1998).Google Scholar
10. Singh, R., Doppalapudi, D., Moustakas, T. D., and Romano, L. T., Appl. Phys. Lett. 70, 1089 (1997).Google Scholar
11. Martin, R. W., Middleton, P. G., O'Donnell, K. P., and Stricht, W. Van der, Appl. Phys. Lett. 74, 263 (1999).Google Scholar
12. Kollmer, H., Im, J. S., Heppel, S., Off, J., Scholz, F., and Hangleiter, A., Appl. Phys. Lett. 74, 82 (1999).Google Scholar
13. Sugiura, H., Mitsuhara, M., Oohashi, H., Hirono, T., and Nakashima, K., J. Crystal Growth 147, 1 (1995).Google Scholar