Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T04:16:14.010Z Has data issue: false hasContentIssue false

Comparison of Sol-Gel Derived and Pulsed Laser Deposited Epitaxial La0.67Ca0.33MnO3 Films for IR Bolometer

Published online by Cambridge University Press:  17 March 2011

Rickard Fors
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, Sweden
Annika Pohl
Affiliation:
Department of Material Chemistry, Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
Sergey Khartsev
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, Sweden
Alexander Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, SE-164 40 Stockholm-Kista, Sweden
Gunnar Westin
Affiliation:
Department of Material Chemistry, Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
Get access

Abstract

Epitaxial La0.67Ca0.33MnO3 films have been prepared on LaAlO3 crystals by pulsed laser deposition (PLD) and by a novel all-alkoxide sol-gel technique. Different out-of-plane lattice parameters are found for the as-prepared films, and scanning electron microscopy shows a more porous structure for sol-gel films as compared to PLD films. These differences are largely removed by post-annealing at 1000 °C. Transport measurements show maximum temperature coefficient of resistivity of 8.2 % K−1 at 258 K (PLD) and 6.1 % K−1 at 241 K (sol-gel) and colossal magnetoresistance at 7 kOe of 35 % at 263 K (PLD) and 32 % at 246 K (sol-gel).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Salamon, M. B., Jaime, M., Rev. Mod. Phys. 73 (2001) 583.Google Scholar
2. Prellier, W., Lecoeur, Ph., Mercey, B., J. Phys.: Condens. Matter 13 (2001) R915.Google Scholar
3. Haghiri-Gosnet, A. M., Renard, J. P., J. Phys. D: Appl. Phys. 36 (2003) R127.Google Scholar
4. Rajeswari, M., Chen, C., Goyal, A., Kwon, C., Robson, M. C., Ramesh, R., Venkatesan, T., Lakeou, S., Appl. Phys. Lett. 68 (1996) 3555.Google Scholar
5. Lisauskas, A., Khartsev, S. I., Grishin, A. M., Appl. Phys. Lett. 77 (2000) 756.Google Scholar
6. Kim, J.-H., Khartsev, S.I., Grishin, A.M., Appl. Phys. Lett. 82 (2003) 4295.Google Scholar
7. Bae, S.-Y., Wang, S. X., Appl. Phys. Lett. 69 (1996) 121 Google Scholar
8. Angappane, S., Murugaraj, P., Sethupathi, K., Rangarajan, G., Sastry, V. S., Chakkaravarthi, A. Arul, Ramasamy, P., J. Appl. Phys. 89 (2001) 6979.Google Scholar
9. Pohl, I. A. M., Westin, L. G., Kritikos, M., Chem. Eur. J. 7 (2001) 3438.Google Scholar
10. Pohl, I. A. M., Westin, L. G., Jansson, K., Chem. Mater. 14 (2002) 1981.Google Scholar
11. Hasenkox, U., Mitze, C., Waser, R., J. AM. Ceram. Soc. 80 (1997) 2709.Google Scholar
12. Pietambaram, S. V., Kumar, D., Singh, R. K., Lee, C. B., Mat. Res. Soc. Symp. 617 (2000) J3141.Google Scholar
13. Willmott, P. R., Huber, J. R., Rev. Mod. Phys. 72 (2000) 315.Google Scholar
14. Wu, W., Wong, K. H., Li, X.-G., Choy, C. L., Zhang, Y. H., J. Appl. Phys. 87 (2000) 3006.Google Scholar
15. Osthöver, C., Schmidt, K., Arons, R. R., Mat. Sci. Eng. B56 (1998) 164.Google Scholar