Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-29T23:50:23.280Z Has data issue: false hasContentIssue false

Comparison of Mocvd Precursors for Hf1-xSixO2 Gate Dielectric Deposition

Published online by Cambridge University Press:  01 February 2011

B.C. Hendrix
Affiliation:
ATMI, 7 Commerce Drive, Danbury, CT 06810, U.S.A.
A.S. Borovik
Affiliation:
ATMI, 7 Commerce Drive, Danbury, CT 06810, U.S.A.
Z. Wang
Affiliation:
ATMI, 7 Commerce Drive, Danbury, CT 06810, U.S.A.
C. Xu
Affiliation:
ATMI, 7 Commerce Drive, Danbury, CT 06810, U.S.A.
J.F. Roeder
Affiliation:
ATMI, 7 Commerce Drive, Danbury, CT 06810, U.S.A.
T. H. Baum
Affiliation:
ATMI, 7 Commerce Drive, Danbury, CT 06810, U.S.A.
M.J. Bevan
Affiliation:
Texas Instruments, PO Box 650311 M/S 3737, Dallas TX 75265, U.S.A.
M.R. Visokay
Affiliation:
Texas Instruments, PO Box 650311 M/S 3737, Dallas TX 75265, U.S.A.
J.J. Chambers
Affiliation:
Texas Instruments, PO Box 650311 M/S 3737, Dallas TX 75265, U.S.A.
A.L.P. Rotondaro
Affiliation:
Texas Instruments, PO Box 650311 M/S 3737, Dallas TX 75265, U.S.A.
H. Bu
Affiliation:
Texas Instruments, PO Box 650311 M/S 3737, Dallas TX 75265, U.S.A.
L. Colombo
Affiliation:
Texas Instruments, PO Box 650311 M/S 3737, Dallas TX 75265, U.S.A.
Get access

Abstract

This study investigates and compares the deposition of Hf1-xSixO2 films from two suites of metalorganic CVD precursors. The first precursor suite has oxygen coordinated to the Si or Hf center and includes β-diketonate, alcoxide and acetoxy ligands. The second precursor suite has alkylamido ligands, which have nitrogen coordinated to the Hf or Si center. The process space for deposition of silicates was evaluated for controlling the composition of the silicate films while optimizing deposition rates for a manufacturable single-wafer process. The composition of the film, x, is controlled over the entire range by changing the composition of the precursor solution, Si:Si+Hf. The composition of the films, including hafnium, silicon, oxygen, carbon, and nitrogen content were measured by XPS. Both suites of precursors provide routes by which composition can be controlled in fully oxidized films with low carbon and nitrogen content. Film deposition rates are consistent with manufacturing requirements. The interfacial layers that were observed by HRTEM between the film and the substrate were thin (< 10Å) and possibly graded in composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001).Google Scholar
2. Kingon, A.I., Maria, J-P, Streiffer, S.K., Nature 406, 1032 (2000) and D.A. Neumayer, E.Cartier, J. Appl. Phys. 90, 1801 (2001).Google Scholar
3. Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 87, 484 (2000); G. Rayner, R.Therrien, and G. Lukovsky in Gate Stack and Silicide Issues in Silicon Processing, edited by L.A. Clevenger, S.A. Campbell, P.R. Besser, S.B. Herner, J. Kittl, (Mater. Res. Soc. Proc. 611, Pittsburgh, PA, 2000) C1.3.1-C1.3.6; W-J Qi, R. Nieh, E. Dharmarajan, B.H. Lee, Y. Jeon, L.Kang, K. Onishi, and J.C. Lee, Appl. Phys. Lett. 77, 1704 (2000).Google Scholar
4. Lucovsky, G. and Rayner, G.B., Appl. Phys. Lett. 77, 2912 (2000).Google Scholar
5. Chambers, J.J., Rotondaro, A.L.P. Bevan, M.J., Visokay, M.R. and Colombo, L. Electrochem. Soc. Proc. PV 2001-26, 359 (2002).Google Scholar
6. Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 87, 484 (2000).Google Scholar
7. Quevedo-Lopez, M., El-Bouanani, M., Addepalli, S. Duggan, J. L., Gnade, B. E., Wallace, R. M., Visokay, M. R., Douglas, M. and Colombo, L. Appl. Phys. Lett. 79, 4192 (2001).Google Scholar
8 Chambers, J. J. and Parsons, G. N. in Gate Stack and Silicide Issues in Silicon Processing, edited by Clevenger, L.A., Campbell, S.A., Besser, P.R., Herner, S.B., Kittl, J. (Mater. Res. Soc. Proc. 611, Pittsburgh, PA, 2000) C1.6–C1.6.6, and M. Copel, E. Cartier, and F.M. Ross, Appl. Phys. Lett. 78 1607 (2001).Google Scholar
9. Roeder, J.F., Baum, T.H., Bilodeau, S.M., Stauf, G.T., Ragaglia, C. Russell, M.W., Buskirk, P.C. Van, Adv. Mater. Opt. Electron. 10, 145 (2000).Google Scholar
10. Lee, C.H., Luan, H.F., Bai, W.P., Lee, S.J., Jeon, T.S., Senzaki, Y. Roberts, D. and Kwong, D.L., Tech. Dig. Int. Electron Devices Meet. (2000), p. 27.Google Scholar
11. Smith, R.C., Taylor, C.J., Roberts, J. Hoilien, N. Campbell, S.A., and Gladfelter, W.L., in Gate Stack and Silicide Issues in Silicon Processing, edited by Clevenger, L.A., Campbell, S.A., Besser, P.R., Herner, S.B., Kittl, J. (Mater. Res. Soc. Proc. 611, Pittsburgh, PA, 2000) C2.8–C2.8.6.Google Scholar
12. Hendrix, B.C., Borovik, A.S., Xu, C, Roeder, J.F., Baum, T. H., Bevan, M.J., Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P. Bu, H. Colombo, L. to be published Appl. Phys. Lett. 80, (1 April, 2002).Google Scholar
13. Shanware, A. McPherson, J. Visokay, M.R., Chambers, J.J., Rotondaro, A.L.P. Bu, H. Bevan, M.J., Khamankar, R. Colombo, L. Tech. Dig. Int. Electron Devices Meet. (2001), p. 137.Google Scholar