Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-24T01:18:24.119Z Has data issue: false hasContentIssue false

Comparison of Experimental and Computational Aspects of Grain Growth in Al-Foil

Published online by Cambridge University Press:  21 March 2011

Melik C. Demirel
Affiliation:
Carnegie Mellon University, Materials Science & Engineering, PA, USA
Andrew P. Kuprat
Affiliation:
Theoretical Division, T-1, Los Alamos National Laboratory, NM, USA
Denise C. George
Affiliation:
Theoretical Division, T-1, Los Alamos National Laboratory, NM, USA
Bassem S. El-Dasher
Affiliation:
Carnegie Mellon University, Materials Science & Engineering, PA, USA
Neil N. Carlson
Affiliation:
Computational Materials Group, DigitalDNA Laboratories, Motorola, NM, USA
Galen K. Straub
Affiliation:
Theoretical Division, T-1, Los Alamos National Laboratory, NM, USA
Anthony D. Rollett
Affiliation:
Carnegie Mellon University, Materials Science & Engineering, PA, USA
Get access

Abstract

Grain boundary and crystallographic orientation information of an Al-foil with a columnar grain structure is characterized by Electron Backscattered Diffraction (EBSD) technique. The starting microstructure and grain boundary properties are implemented as an input for the three- dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 °C. Good agreement is observed between the experimentally obtained microstructure and the simulated microstructure. The constitutive description of the grain boundary properties was based on a 1- parameter characterization of the variation in mobility with misorientation angle.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adams, B. L., Kinderlehrer, D., Mullins, W. W., Rollett, A. D., Ta'asan, S., Scripta Materialia 38, 531536 (1998).Google Scholar
2. Anderson, M. P., Grest, G. S., Srolovitz, D. J., Philosophical Magazine B 59, 293329 (1989).Google Scholar
3. Wakai, F., Enomoto, N., Ogawa, H., Acta Materialia 48, 12971311 (2000).Google Scholar
4. Mullins, W. W., Acta Metallurgica 37, 29792984 (1989).Google Scholar
5. Jensen, D. J., Poulsen, H. F., Lorentzen, T., Plastic Deformation, Recrystallization and Internal Stresses studied by a new 3D X-Ray Microscope, MRS Fall'99 Meeting, Boston, MA, USA (1999).Google Scholar
6. Kuprat, A., Siam J. Scientific Computing 22, 535560 (2000).Google Scholar
7. Carlson, N.N., Miller, K., Siam J. Scientific Computing 19, 766798 (1998).Google Scholar
8. Kuprat, A., Los Alamos National Laboratory Report LA-UR-00-3475, (2000).Google Scholar
9. Straub, G. K., George, D. G., Kuprat, A. P., Los Alamos National Laboratory Report LA-UR-00-1, (2000).Google Scholar
10. Shannon, C. E., Proc. IRE 10 (1949)Google Scholar
11. Demirel, M. C., El-Dasher, B. S., Adams, B. L., Rollett, A. D., Studies on the Accuracy of Electron Backscatter Diffraction Measurements. Schwartz, A. J., Kumar, M., and Adams, B. L., Ed., Electron Backscatter Diffraction in Materials Science, 6574 (Kluwer Academic-Plenium Publishers, New York, 2000).Google Scholar
12. Yang, C.-C., Rollett, A. D., Mullins, W. W., Scripta Materialia, submitted (2000).Google Scholar
13. George, D., User Manual, http://www.t12.lanl.gov/∼lagrit/. (1995).Google Scholar
14. Kinderlehrer, D., Livshits, I., Ta'asan, S., Mason, D. E., Multiscale Reconstruction of Grain Boundary Energy from Microstructure, Twelfth International Conference on Textures of Materials, Montréal, Canada (1999).Google Scholar
15. For movies of the computer simulation in figure 1, see http://mimp.mems.cmu.edu /links.html (2000).Google Scholar