Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T05:12:59.071Z Has data issue: false hasContentIssue false

Comparison of Current-Induced Migration of Be and C in GaAs/AlGaAs HBTs

Published online by Cambridge University Press:  03 September 2012

F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
J. R. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
P. W. Wisk
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
R. F. Kopf
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
A. B. Emerson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
S. W. Downey
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
Get access

Abstract

We contrast the stability under bias-aging conditions of GaAs/AlGaAs HBTs utilizing highly Be- or C-doped base layers. Devices with Be doping display a rapid degradation of dc current gain and junction ideality factor. At 200°C, a 2 × 10 μm2 Be-doped device (4 × 1019cm−3 base doping) operated at a current density of 2.5 × 104 A. cm−2 shows a decrease in gain from 16 to 1.5 within 2h. Under the same conditions a C-doped device with even higher base-doping (7 × 1019 cm−3) is stable over periods of 36h, the longest time we tested our structures. The degradation of Be-doped devices is consistent with the mechanism of recombination-enhanced diffusion of interstitials into the adjoining layers. Similar results are obtained with Zn-doped devices. Since C occupies the As sub-lattice rather than the Ga sublattice as with Be and Zn, it is not susceptible to reaction with Ga interstitials injected during growth or bias-aging.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Enquist, P. M., Hitchby, J. A., and de Lyon, T. J., J. Appl. Phys. 63, 4485 (1988).CrossRefGoogle Scholar
2. Hobson, W. S., Pearton, S. J., and Jordan, A. S., Appl. Phys. Lett. 56, 1251 (1990).CrossRefGoogle Scholar
3. Kopf, R. F., Kuo, J. M., Downey, S. W. and Emerson, A. B. (to be published).Google Scholar
4. See, for example, Asbeck, P. M., in High Speed Semiconductor Devices, edited by Sze, S. M. (Wiley-Interscience, New York, 1990), Chap. 6.Google Scholar
5. Nakayima, O., Ito, H., Nittono, T., and Nagata, K., Technical Digest of the International Electron Device Meeting, San Francisco, Dec. 1990 IEEE, New York, 1990), pp. 673676.CrossRefGoogle Scholar
6. Hafizi, M. E., Paulowicz, L. M., Tran, L. T., Umemoto, D. K., Streit, D. C., Oki, A. K., Kim, M. E., and Yen, K. H., Technical Digest of the GaAs IC Symposium, New Orleans, Oct. 1990 (IEEE, New York, 1990), pp. 329332.Google Scholar
7. Uematsu, M. and Wada, K., Appl. Phys. Lett. 58, 2015 (1991).CrossRefGoogle Scholar
8. Ren, F., Fullowan, T. R., Abernathy, C. R., Pearton, S. J., Smith, P. R., Kopf, R. F., Laskowski, E. J., and Lothian, J. R., Electron. Lett. 27, 1009 (1991).Google Scholar
9. Ren, F., Pearton, S. J., Hobson, W. S., Fullowan, T. R., Lothian, J., and Yanof, A. W., Appl. Phys. Lett. 56, 860 (1990).CrossRefGoogle Scholar
10. Downey, S. W., Kopf, R. F., Schüben, E. F., and Kuo, J. M., Appl. Opt. 29, 4938 (1990).CrossRefGoogle Scholar
11. Hoffer, G. E., Klatt, J., Baillargeon, J. N., Hseih, D. C., Averback, R. S., Cheng, K. Y., and Stillman, G. E., Prog. Fall 1991 Materials Research Society Conf. (Boston, MA), p. 46.Google Scholar
12. Bierack, J. P. and Haggmack, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar