Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T09:15:09.671Z Has data issue: false hasContentIssue false

Colossal Magnetoresistance in New Manganites

Published online by Cambridge University Press:  10 February 2011

C. H. Shen
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, TAIWAN
R. S. Liu
Affiliation:
Department of Chemistry, National Taiwan University, Taipei, TAIWAN
S. F. Hu
Affiliation:
National Nano Device Laboratories, Hsinchu, TAIWAN
J. G. Lin
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, TAIWAN
C. Y. Huang
Affiliation:
Center for Condensed Matter Sciences, Department of Physics and Department of Electrical Engineering, National Taiwan University, Taipei, TAIWAN
Get access

Abstract

The evolution of structural, electrical and magnetic properties with the isovalent chemical substitution of Ca2+ into the Sr2+ sites in new series of two-dimensional La1.2(Srl.8−XCax)Mn2O7 compounds (x = 0 ∼ 1.8) and three-dimensional La0.6(Sr0.4−xCax)MnO3 compounds (x = 0 ∼ 0.4) are investigated. The highest magnetoresistance (MR) ratios [ρ(0) - ρ(H) / ρ(0)] of 52 % (H = 1.5 T) at 102 K and 13 % (H = 1.5 T) at 210 K were observed for the x = 0.4 samples in La1.2(Sr1.8−xCax Mn2O7 and La0.6(Sr0.4−xCax)MnO3, respectively. The Curie temperatures (Tc) decreased from 135 K to 102 K and 370 K to 270 K for x = 0 to 0.4 in La1.2(Sr1.8−xCax)Mn2O7 and La0.6(Sr0.4−xCax)MnO3, respectively. The compositional dependence of the structural variation has been found in La0.6(Sr0.4−xCax)MnO3. Our results confirm that the dimensionality as well as ionic size plays an important role in controlling the colossal magnetoresistance in manganites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, 413 (1994).Google Scholar
2. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
3. Gennes, P.-G. de, Phys. Rev. 118, 141 (1960).Google Scholar
4. Moritomo, Y., Asamitsu, A., Kuwahara, H., and Tokura, Y., Nature 380, 141 (1996).Google Scholar
5. Asano, H., Hayakawa, J., and Matsui, M., Phys. Rev. B 57, 1052 (1998).Google Scholar
6. Guo, Z. B., Yang, W., Shen, Y. T., and Du, Y. W., Solid State Commun. 105, 89 (1998).Google Scholar
7. Liu, R. S., Shen, C. H., Lin, J. G., Huang, C. Y., Chen, J. M., and Liu, R. G., J. Chem. Soc. Dalton Trans. 923 (1999).Google Scholar
8. Liu, R. S., Shen, C. H., Lin, J. G., Chen, J. M., Liu, R. G., and Huang, C. Y., J. Inorg. Mater. 1, 61 (1999).Google Scholar
9. Larson, A. C. and Dreele, R. B. Von, Generalized Structure Analysis System (Los Alamos National Laboratory Los Alamos NM 1994).Google Scholar
10. Shannon, R. D., Acta. Cryst. Sect. A 32, 751 (1976).Google Scholar
11. Shen, C. H., Liu, R. S., Hu, S. F., Lin, J. G., Huang, C. Y., and Sheu, S. H., J. Appl. Phys. 86, 2178 (1999).Google Scholar
12. Mahendiran, R., Tiwary, S. K., Raychaudhuri, A. K., Ramakrishnan, T. V., Mahesh, R., Rangavittal, N., and Rao, C. N. R., J. Solid State Chem. 114, 297 (1995).Google Scholar
13. Guo, Z. B., Du, Y. W., Zhu, J. S., Huang, H., Ding, W. P., and Feng, D., Phys. Rev. Lett. 78, 1142 (1997).Google Scholar
14. Huang, H. Y., Cheong, S. -W., Radaelli, P. G., Marezio, M., and Batlogg, B.: Phys. Rev. Lett. 75, 914 (1995).Google Scholar
15. Radaelli, P. G., Iannone, G., Marezio, M., Hwang, H. Y., Cheong, S. -W., Jorgensen, J. D. and Argyriou, D. N., Phys. Rev. B 56, 8265 (1997).Google Scholar