Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-15T07:15:03.327Z Has data issue: false hasContentIssue false

Coalescence of C60 Molecules in Fullerite by Intense Femtosecond Laser Pulses: An Ab–Initio Simulation

Published online by Cambridge University Press:  10 February 2011

A. Gambirasio
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 1–20125 Milano, Italy
M. Bernasconi
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 1–20125 Milano, Italy
G. Benedek
Affiliation:
INFM and Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 1–20125 Milano, Italy
P. L. Silvestrelli
Affiliation:
INFM and Dipartimento di Fisica “G. Galilei”, Universitá di Padova, Via Marzolo 8, I–35131 Padova, Italy Max–Planck–Institut für Festkörperforschung, Heisenbergstr. 1, D–70569 Stuttgart, Germany
Get access

Abstract

We present an ab–initio molecular dynamics study of the modifications induced on fullerite by the irradiation with ultrashort very intense laser pulses. We identified the threshold for the non–thermal cage–opening of the C60 molecules which is the analogue of the laserinduced non–thermal melting observed in semiconductors and graphite. The new phase formed by the non–thermal coalescence of the C60 molecules is fluid–like and mainly formed by small chains of 2–fold coordinated carbon atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Eklund, P. C., Rao, A. M., Zhou, Ping, Wang, Ying and Holden, J. M., Thin Solid Films 257, 185 (1995).Google Scholar
[2] Campbell, E. E. B. and Hertel, I. V., Carbon, 30, 1157 (1992).Google Scholar
[3] Ferretti, M., Parisini, A., Manfredini, M. and Milani, P., Chem. Phys. Lett. 259, 432 (1996); P. Milani, C. E. Bottani, A. Parisini, and G. P. Banfi, Appl. Phys. Lett. 72, 293 (1998).Google Scholar
[4] Rao, A. M., et al. , Science 259, 955 (1993).Google Scholar
[5] Sokolowski-Tinten, K., Bialkowski, J., Linde, D. von, and Phys. Rev. B 51, 14186 (1995).Google Scholar
[6] Silvestrelli, P.L., Alavi, A., Parrinello, M., and Frenkel, D., Phys. Rev. Lett. 77, 3149 (1996); ibidem, Phys. Rev. B 56, 3806 (1997).Google Scholar
[7] Alavi, A., Kohanoff, J., Parrinello, M., and Frenkel, D., Phys. Rev. Lett. 73, 2599 (1994).Google Scholar
[8] Silvestrelli, P. L. and Parrinello, M., J. Appl. Phys. 83, 2478 (1998).Google Scholar
[9] CPMD, Hutter, J. et al. , Max–Planck–Institut für Festkörperforschung and IBM Research Laboratory (1990-1999).Google Scholar
[10] Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
[11] Johnson, R. D., et al. , Accounts of Chemical Research, 25, 169 (1992).Google Scholar
[12] Banfi, G. P., Fortusini, D., Bellini, M. and Milani, P., Phys. Rev. B 56, 10075 (1997).Google Scholar
[13] Hora, J., Pánek, P., Navátil, K., Handlířová, B., Humlíček, J., Sitter, H. and Sitter, D., Phys. Rev. B 54, 5106 (1996).Google Scholar
[14] We verified that a tight–binding model [15] is able to reproduce, at least qualitatively, the non–thermal fragmentation process and to provide a structure of the l'-C phase very close to the ab–initio results. Therefore we checked for possible artifacts due to the finite size of the simulation cell only within the tight–binding framework.Google Scholar
[15] Zhang, B. L., Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. B 48, 11381 (1993).Google Scholar