Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T00:55:10.946Z Has data issue: false hasContentIssue false

Characterizing Porosity in Nanoporous Thin Films Using Positronium Annihilation Lifetime Spectroscopy

Published online by Cambridge University Press:  01 February 2011

J.N. Sun
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
D. W. Gidley
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
Y.F. Hu
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
W.E. Frieze
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
S. Yang
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974
Get access

Abstract

Depth profiled positronium annihilation lifetime spectroscopy (PALS) has been used to probe the pore characteristics (size, distribution, and interconnectivity) in thin, porous films, including silica, organic and hybrid films. PALS has good sensitivity to and resolution of all pores (both interconnected and closed) in the size range from 0.3 nm to 30 nm, even in films buried under a diffusion barrier. In this technique a focussed beam of several keV positrons forms positronium (Ps, the electron-positron bound state) with a depth distribution that depends on the selected positron beam energy. Ps inherently localizes in the pores where its natural (vacuum) annihilation lifetime of 142 ns is reduced by collisions with the pore surfaces. The collisionally reduced Ps lifetime is correlated with pore size and is the key feature in transforming a Ps lifetime distribution into a pore size distribution. In hybrid films made porous by a degradable porogen PALS readily detects a percolation threshold with increasing porosity that represents the transition from closed pores to interconnected pores. PALS is a non-destructive, depth profiling technique with the only requirement that positrons can be implanted into the porous film where Ps can form.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Semiconductor Industry Association, International Technology Roadmaps of Semiconductors (1999)Google Scholar
2. Hedrick, J.L. Cha, H.-J., Miller, R.D. Yoon, D. Y. Brown, H.R. Srinivasan, S. Pietro, R.D. Cook, R.F. Hummel, J.P. Klaus, D.P. Liniger, E.G. and Simonyi, E. E. Macromolecules, 30, 8512 (1997)Google Scholar
3. Hacker, N.P. Davis, G. Figge, L. Krajewski, T. Lefferts, S. Nedbal, J. and Spear, R. Mat. Res. Soc. Symp. Proc., 511, 25 (1998)Google Scholar
4. Kohl, A.T. Mimna, R. Shick, R. Rhodes, L. Wang, Z.L. and Kohl, P.A. Electrochem. Solid ST, 2, 2, 77 (1999)Google Scholar
5. Carter, K. R. Mat. Res. Soc. Sypm. Proc., 467, 87 (1997)Google Scholar
6. Yang, S. Mirau, P. A. Pai, C. S. Nalamasu, O. Reichmanis, E. Pai, J.C. Obeng, Y.S. Seputro, J., Lin, E.K. Lee, H. J. Sun, J.N. and Gidley, D. W. Chemistry of Materials, 14, 369 (2002); S. Yang, P. A. Mirau, C. S. Pai, O. Nalamasu, E. Reichmanis, E.K. Lin, H. J. Lee, D. W. Gidley and J.N. Sun, Chemistry of Materials, 13, 9, 2762 (2001)Google Scholar
7. Fan, H. Bentley, H. R. Kathan, K. R. Clem, P. Lu, Y. and Brinker, C. J. J. Non-Cryst. Solids. 285, 79 (2001)Google Scholar
8. Hedrick, J. L. Russel, T. P. Sanchez, M. DiPietro, R. Swanson, S. Mecerreyes, D. Jerome, R. Macromolecules, 29, 3642 (1996)Google Scholar
9. Gidley, D.W. Frieze, W.E. Yee, A.F. Dull, T.L. Ho, H. -M. and Ryan, E.T. Phys. Rev. B, Rapid Comm., 60, 8, R5157 (1999)Google Scholar
10. Gidley, D.W. Frieze, W.E. Dull, T.L. Sun, J.N. Yee, A.F. Nguyen, C. V. and Yoon, D. Y. Appl. Phys. Lett. 76, 10, 1282 (2000)Google Scholar
11. Petkov, M. P. Weber, M. H. Lynn, K. G. Rodbell, K. P. and Cohen, S. A. J. Appl. Phys. 86, 3104 (1999).Google Scholar
12. Tao, S. J. J. Chem. Phys. 56, 5499 (1972).Google Scholar
13. Eldrup, M. Lighbody, D. and Sherwood, J. N. Chem. Phys. 63, 51 (1981).Google Scholar
14. Dull, T.L. Frieze, W.E. Gidley, D.W. Sun, J.N. and Yee, A.F. J. Phys. Chem. B, 105, 4657 (2001) and references therein.Google Scholar
15. Kondoh, E. Baklanov, M. R. Lin, E. K. Gidley, D. W. and Nakashima, A. Jpn. J. Appl. Phys., Part 2, 40, 4A, L323 (2001)Google Scholar
16. Petkov, M. P. Weber, M.H. Lynn, K. G. and Rodbell, K. P. Appl. Phys. Lett., 77, 16, 2470 (2000)Google Scholar
17. Schultz, P. J. and Lynn, K. G. Reviews of Modern Physics, 60, 3, 701 (1988)Google Scholar