Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T09:39:54.429Z Has data issue: false hasContentIssue false

Characterization on the Electrical Properties of PDMS Nanocomposites by Conducting Polymer Nanowires

Published online by Cambridge University Press:  28 January 2011

Ping Du
Affiliation:
Department of Mechanical Engineering, Boston University, Boston, MA 02215, U.S.A.
Xi Lin
Affiliation:
Department of Mechanical Engineering, Boston University, Boston, MA 02215, U.S.A.
Xin Zhang
Affiliation:
Department of Mechanical Engineering, Boston University, Boston, MA 02215, U.S.A.
Get access

Abstract

Polydimethylsiloxane (PDMS) is one of the most used materials in bio-applications. However, previous works were mainly focus on the mechanical aspect. In this paper we presented a practical and efficient approach to enhance the electrical properties of PDMS by using conducting polymer nanowires (CPNWs). The nanowires were synthesized using template method and added in PDMS to form nanocomposites. The dielectric constants of the composites were characterized by impedance measurements, and the dielectric relaxation behavior and the volume fraction of CPNWs was investigated. Based on the percolation theory a much lower threshold (5.3 vol%) was achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, K. M. and Olden, K., Nature 275, 179184 (1978).Google Scholar
2. McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H. K., Schueller, O. J. A. and Whitesides, G. M., Electrophoresis 21, 2740 (2000).Google Scholar
3. Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K. and Chen, C. S., Proc. Natl. Acad. Sci. USA. 100, 14841489 (2003).Google Scholar
4. Zhao, Y. and Zhang, X., 18th IEEE MEMS, Miami Beach, FL, 398404 (2005).Google Scholar
5. Zheng, X. and Zhang, X., J. Micromech. Microeng. 18, 125006 (2008).Google Scholar
6. Hong, J., Lee, J., Hong, C. and Shim, S., J. Therm. Anal. Calorim. 101, 297302 (2010).Google Scholar
7. Tran, H. D., Li, D. and Kaner, R. B., Adv. Mater. 21, 14871499 (2009).Google Scholar
8. Van Dyke, L. S. and Martin, C. R., Langmuir 6, 11181123 (1990).Google Scholar
9. Martin, C. R., Chem. Mat. 8, 17391746 (1996).Google Scholar
10. Martin, C. R., Science 266, 19611966 (1994).Google Scholar
11. Xiao, Z. L., Han, C. Y., Welp, U., Wang, H. H., Kwok, W. K., Willing, G. A., Hiller, J. M., Cook, R. E., Miller, D. J. and Crabtree, G. W., Nano Lett. 2, 12931297 (2002).Google Scholar
12. Xiao, R., Cho, S. I., Liu, R. and Lee, S. B., J. Am. Chem. Soc. 129, 44834489 (2007).Google Scholar
13. Pei, Q. and Qian, R., Synthetic Met. 45, 3548 (1991).Google Scholar
14. Seybold, J. S., Introduction to RF propagation. (John Wiley and Sons, 2005).Google Scholar
15. Mark, J. E., Polymer Data Handbook. (Oxford University Press, New York, 1999).Google Scholar
16. Debye, P., Polar Molecules. (Chemical Catalog Company, New York, 1929).Google Scholar
17. Cole, K. S. and Cole, R. H., J. Chem. Phys. 9, 341351 (1941).Google Scholar
18. Wang, C. C., Song, J. F., Bao, H. M., Shen, Q. D. and Yang, C. Z., Adv. Funct. Mater. 18, 12991306 (2008).Google Scholar
19. McLachlan, D. S. and Sauti, G., J. Nanomater. 2007, 19 (2007).Google Scholar