Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T12:28:25.695Z Has data issue: false hasContentIssue false

Characterization of Structural Quality of Bonded Silicon-On-Insulator Wafers by Spectroscopic Ellipsometry and Raman Spectroscopy

Published online by Cambridge University Press:  17 March 2011

N. V. Nguyen
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
J. E. Maslar
Affiliation:
Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Jin-Yong Kim
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Jin-Ping Han
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Jin-Won Park
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
D. Chandler-Horowitz
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
E. M. Vogel
Affiliation:
Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
Get access

Abstract

The crystalline quality of bonded Silicon-On-Insulator (SOI) wafers were examined by spectroscopic ellipsometry and Raman spectroscopy. Both techniques detect slight structural defects in the SOI layer. If a pure crystalline silicon dielectric function is assumed for the SOI layer, the spectroscopic ellipsometry data fitting yields an unacceptably large discrepancy between the experimental and modeled data. The best fits for all the samples result in a dielectric function of the SOI layer that consists of a physical mixture of crystalline silicon and about 4 % to 7 % of amorphous silicon. Using such a mixture indicates that there are still some defects in the SOI layer when compared with the high-quality bulk crystalline silicon. This observation is further supported by Raman spectroscopy measurements. The Raman spectra of all SOI samples exhibit a feature at about 495 cm−1 that is not observed in the crystalline silicon spectrum. Features similar to the 495 cm−1 feature have been reported in the literature and attributed to dislocations or faults in the silicon lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Celler, G. K., Cristoloveanu, Sorin, J. Appl. Phys. 93, 4955 (2003).Google Scholar
2. The International Technology Roadmap for Semiconductors, 2001 Edition, The Semiconductor Industry Association, 2706 Montopolis Drive, Austin, Texas, 2001 Google Scholar
3. Zollner, S., Lee, T.-C, Noehring, K., Kondar, A., Theodore, M. D., Huang, W. M., Monk, D., Wetteroth, T., Wilson, S. R., Hilfiker, J. N., Appl. Phys. Lett. 76, 46 (2000); V. P. Popov, I. V. Antonova, V. F. Stas, L. V. Mironova, A. K. Gutakovskii, E. V. Spesivtsev, A. S. Mardegzhov, A. A. Franznusov, and G. N. Feofanov, Materials Science and Engineering B73, 82 (2000); Lianchao Sun, Jean-Claude Fouere, Christophe Defranoux, Patrice Heinrich, Christine Dos Reis, Thierry Emeraud, Jean-Philippe Piel, and Jean-Louis Stehle, Mat. Res. Soc. Symp. Proc. 786, E6.9.1 (2004).Google Scholar
4. Bruel, M., Aspar, B., and Auberton-Herve, A. J., Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36, 1636 (1997).Google Scholar
5. Johs, Blaine, Woollam, Hohn A., Herzinger, Craig M., Hilfiker, James, Synowicki, Ron, and Bundgay, Corey L., SPIE CR72, 29 (1999).Google Scholar
6. Bruggeman, D. A. G., Ann. Phys. (Leipzig) 24 (1935).Google Scholar
7. Aspnes, D. E., Phys. Rev. B 29, 768 (1984).Google Scholar
8. Candela, G. A. et al. , Standard Reference Materials: Preparation and Certification of SRM-2530, Ellipsometric Parameters δ and Ψ and Derived Thickness and Refractive Index of a Silicon Dioxide Layer on Silicon, NIST Special Publication 260–109 (1988).Google Scholar
9. Herzinger, C. M., Johs, B., McGalan, W. A., and Woollam, J. A., J. Appl. Phys. 83, 3323 (1998); D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 7466 (1983); G. E. Jellison, Jr., Opt. Mater. 1, 41 (1992); T. Yasuda and D. E. Aspnes, Appl. Opt. 33, 7435 (1994).Google Scholar
10. Richter, H. and Ley, L., Journal De Physique 42, C4 261 (1981); Z. Iqbal and S.Veprek, J. Phys. C: Solid State Phys. 15, 377 (1982); D. J. Olego and H. Baumgart, J. Appl. Phys. 63, 2669 (1988); V. Paillard, P. Puech, P. Temple-Boyer, B. Caussat, E. Scheid, J. P. Couderc, and B. de Mauduit, Thin Solid Films 337, 93 (1999).Google Scholar
11. Bandet, J., Frandon, J., Fabre, F., and Demauduit, B., Jpn. J. Appl. Phys. Part 1 32, 1518 (1993); D. R. Tallant, T. J. Headley, J. W. Medernach, and F. Geyling, in Materials Research Society Symposium Proceedings, vol. 324, edited by O. J. Glembocki, (Materials Research Society, 1994), p. 255.Google Scholar
12. Geissberger, A. E. and Galeener, F. L., Phys. Rev. B 28, 3266 (1983).Google Scholar
13. Grisolia, J., Assayag, G. Ben, Claverie, A., Aspar, B., Lagahe, C., and Laanab, L., Appl. Phys. Lett. 76, 852 (2000).Google Scholar
14. Camassel, J., Falkovsky, L. A., and Planes, N., Physical Review B 63, 035309 (2000).Google Scholar