Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T23:10:57.789Z Has data issue: false hasContentIssue false

Characterization of Si1−xGex/Si Heterostructures Using Optically-Detected Magnetic Resonance

Published online by Cambridge University Press:  22 February 2011

T. A. Kennedy
Affiliation:
Electronics Science and Technology Div., Naval Research Laboratory, Washington, DC 20375
E. R. Glaser
Affiliation:
Electronics Science and Technology Div., Naval Research Laboratory, Washington, DC 20375
J. M. Trombetta
Affiliation:
Electronics Science and Technology Div., Naval Research Laboratory, Washington, DC 20375
K. L. Wang
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, CA 90024.
C. H. Chern
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, CA 90024.
V. Arbet-Engels
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, CA 90024.
Get access

Abstract

Si1−xGex/Si heterostructures with varying layer-thicknesses have been characterized using photoluminescence and magnetic resonance detected on photoluminescence. Three of the four samples studied exhibit sharp photoluminescence bands at different energies. For a 120 Å Si/40 Å Si1−xGex heterostructure, magnetic resonance of an electron in the Si and of a hole in the Sil. xGex layers were observed. These results indicate cross-interface, or Type II, excitonic recombination. Further, anisotropie magnetic resonance spectra indicate the presence of dangling-bonds defects in the heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zachai, R., Eberl, K., Abstreiter, G., Kasper, E. and Kibbel, H., Phys. Rev. Lett. 64, 1055 (1990).CrossRefGoogle Scholar
2. Okumura, H., Miki, K., Misawa, S., Sakamoto, K., Sakamoto, T. and Yoshida, S., Jpn. J. Appl. Phys. 28, L1893 (1989).Google Scholar
3. Montie, E. A., van de Walle, G. F. A., Gravesteijn, D. J., van Gorkum, A. A. and Bulle-Lieuwma, C. W. T., Appl. Phys. Lett. 56, 340 (1990).CrossRefGoogle Scholar
4. Kallel, M. A., Arbet, V., Karunasiri, R. P. G. and Wang, K. L., J. Vac. Sci. Technol. B8, 214 (1990).CrossRefGoogle Scholar
5. Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. W., Rowell, N. L., Noël, J. -P. and Houghton, D. C., Phys. Rev. Lett. 66, 1362 (1991).CrossRefGoogle Scholar
6. Schmid, U., Christensen, N. E. and Cardona, M., Phys. Rev. Lett. 65, 2610 (1990).CrossRefGoogle Scholar
7. For a review, see Davies, J. J., J. Crystal Growth 72, 317 (1985).CrossRefGoogle Scholar
8. van Kesteran, H. W., Cosman, E. C., van der Poel, W. A. J. A. and Foxon, C. T., Phys. Rev. B41, 5283 (1990).CrossRefGoogle Scholar
9. Glaser, E., Trombetta, J. M., Kennedy, T. A., Prokes, S. M., Glembocki, O. J., Wang, K. L. and Chern, C. H., Phys. Rev. Lett. 65, 1247 (1990).CrossRefGoogle Scholar
10. Glaser, E., Trombetta, J. M., Kennedy, T. A., Prokes, S. M., Glembocki, O. J., Wang, K. L. and Chern, C. H., in 20th International Conference on the Physics of Semiconductors, edited by Anastassakis, E. M. and Joannopoulos, J. D. (World Scientific, Singapore, 1990), p. 885.Google Scholar
11. Prokes, S. M. and Wang, K. L., Appl. Phys. Lett. 56, 2628 (1990); and S. M. Prokeš (private communication).CrossRefGoogle Scholar
12. Daly, D. F., J. Appl. Phys. 42, 864 (1971).CrossRefGoogle Scholar
13. Shimizu, T., Kumeda, M. and Kiriyama, Y., Solid State Commun. 37, 699 (1981).CrossRefGoogle Scholar
14. Stutzmann, M., Street, R. A., Tsai, C. C., Boyce, J. B. and Ready, S. E., J. Appl. Phys. 66, 569 (1989).CrossRefGoogle Scholar