Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T18:14:29.902Z Has data issue: false hasContentIssue false

Characterization of Semiconductors and Semiconducting Superlattices Using High-Resolution Photoluminescence Spectroscopy

Published online by Cambridge University Press:  28 February 2011

D. C. Reynolds
Affiliation:
Air Force Wright Aeronautical Laboratories, Avionics Laboratory, AFWAL/AADR, Wright-Patterson Air Force Base, Ohio 45433
K. K. Bajaj
Affiliation:
Air Force Wright Aeronautical Laboratories, Avionics Laboratory, AFWAL/AADR, Wright-Patterson Air Force Base, Ohio 45433
C. W. Litton
Affiliation:
Air Force Wright Aeronautical Laboratories, Avionics Laboratory, AFWAL/AADR, Wright-Patterson Air Force Base, Ohio 45433
Get access

Abstract

High resolution photoluminescence for the identification of impurities and defects in semiconductors has emerged as a powerful technique. We review the technique with emphasis on GaAs realizing that it is applicable to many different semiconductor materials. The binding energies of thle ground state and of several low-lying excited states of the impurity centers are determined by studying the radiative transitions associated with excitons bound to neutral donors or acceptors. Recent developments in the studies of GaAs-AlGaAs multi-quantum-well (MQW) structures using high resolution photoluminescence are also reported. Variations of the energies of the various transitions in MQW structures as a function of well size are presented. Estimates of the interfacial quality in these heterostructures are made from line shape analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cho, A. Y. and Arthur, J. R., in Progress in Solid State Chemistry, edited by Somarjai, G. and McCaldin, J., (Pergamon, New York, 1975), Vol. 10, p. 175.Google Scholar
2. Dingle, R., Stormer, H. R., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett. 33, 655 (1978).CrossRefGoogle Scholar
3. Mimura, T., Joshin, K., Hiyamizu, S., Kikusaka, K., and Abe, M.. Jpn. J. Appl. Phys. 20, L598 (1981).Google Scholar
4. Wood, C. E., in Physics of Thin Films, edited by Haas, George and Francombe, M. H. (Academic, New York, 1980), Vol. 11, p. 35.Google Scholar
5.See for example, articles published in Proceedings of the 4th Molecular Beam Epitaxy Workshop, edited by Morkoc, H. (AIP, New York, 1983).Google Scholar
6.See for example, articles published in Proceedings of the International Conference on Metalorganic Vapor Phase Epitaxy, edited by Bonfils, J. F., Irvine, S. J. C., and Mullin, J. B., (North-Holland, Amsterdam, 1981).Google Scholar
7. Weisbuch, C., Dingle, R., Petroff, P. M., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett. 38, 840 (1981).CrossRefGoogle Scholar
8. Goldstein, L., Horokoshi, Y., Tarucha, S., and Okamoto, H., Jpn. J. Appl. Phys. 22, 1489 (1983).CrossRefGoogle Scholar
9. Rashba, E. I. and Gurgenishvili, G. E., Fiz. Tverd. Tela 4, 1029 (1962) (English transl.: Soy. Phys. Solid State 4, 759 (1962).Google Scholar
10. Almassy, R. J., Reynolds, D. C., Litton, C. W., Bajaj, K. K., and McCoy, G. L., Solid State Commun. 38, 1053, (1981).Google Scholar
11. Reynolds, D. C., Bajaj, K. K., Litton, C. W., Bajaj, K. K., and Smith, E. B., Phys. Rev. B28, 3300 (1983).Google Scholar
12. Ruhle, W. and Klingenstein, W., Phys. Rev. B18, 7011 (1978).Google Scholar
13. Herzberg, G. and Spinks, J. W. T., Proc. Roy. Soc. A147, 434 (1934).Google Scholar
14. Reynolds, D. C., Langer, D. W., Litton, C. W., McCoy, G. L., and Bajaj, K. K., Solid State Commun. 46, 473 (1983).Google Scholar
15. Fetterman, H. R., Larsen, D. M., Stillman, G. E., Tannenwald, P. E., and Waldman, J., Phys. Rev. Lett. 26, 975 (1971).Google Scholar
16. Reynolds, D. C., Bajaj, K. K., Litton, C. W., Yu, P. W., Masselink, W. T., Fischer, R., and Morkoc, H., Phys. Rev. 29B, 7038 (1984).CrossRefGoogle Scholar
17. Grerene, R. L. and Bajaj, K. K., Solid State Commun. 45, 831 (1983).CrossRefGoogle Scholar
18. Greene, R. L. and Bajaj, K. K., Solid State Commun. 45, 825 (1983).Google Scholar
19. Stormer, H. L., Pinczuk, A., Gossard, A. C., and Weigmann, W., Appl. Phys. Lett. 38, 692 (1981).CrossRefGoogle Scholar
20. Drummond, T. J., Morkoc, H., Su, S. L., Fischer, R., and Cho, A. Y., Electron. Lett. 17, 870 (1981).CrossRefGoogle Scholar
21. Weisbuch, C., Dingle, R., Gossard, A. C., and Wiegmann, W., in Gallium Arsenide and Related Compounds, Inst. Phys. Conf. Ser. 56 (Bristol, 1981), Edited by Thim, H. W., Ch. 9, p. 711.Google Scholar
22. Reynolds, D. C., Bajaj, K. K., Litton, C. W., Yu, P. W., Singh, J., Masselink, W. T., Fischer, R., and Morkoc, H., Appl. Phys. Lett. 46, 51 (1985).CrossRefGoogle Scholar
23. Singh, J., Bajaj, K. K. and Chaudhuri, S., Appl. Phys. Lett. 44, 805 (1984).CrossRefGoogle Scholar
24. Singh, J., Bajaj, K. K., Reynolds, D. C., Litton, C. W., Yu, P. W., Masselink, W. T., Fischer, R. and Morkoc, H., J. Vac. Sci. Technol. (in press).Google Scholar