Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T04:39:54.943Z Has data issue: false hasContentIssue false

Characterization of Light Emitting Porous Polycrystalline Silicon Films

Published online by Cambridge University Press:  15 February 2011

M. C. Poon
Affiliation:
Department of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
P. G. Han
Affiliation:
Department of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
J. K. O. Sin
Affiliation:
Department of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
H. Wong
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
P. K. Ko
Affiliation:
Department of Electrical & Electronic Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
Get access

Abstract

Polycrystalline silicon (poly-Si) thin films (∼700nm) were deposited by LPCVD, doped with 950°C phosphorous diffusion, and rendered porous by anodization and stain etching. From x-ray photoelectron spectroscopy, poly-Si films have atomic concentration of C(ls):0(ls):Si(2p) = 6%:15%:79%. However, porous poly-Si (PPS) films with weak photoluminescence (PL) have C:O:Si of 20%:38%:42%. For PPS films with strong PL, C:O:Si is 11%:38%:51%. From micro-Raman, scattered spectra for 632nm laser source has peak at 735nm and full wave half maximum (FWHM) of 76nm, and is similar to the PL spectra excited by 400nm uv laser source. High resolution transmission electron microscopy (TEM) study shows that PPS film is of complex structure and composes of numerous Si nano-crystals (1∼10nm) surrounded by amorphous materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T., Appl. Phys. Lett. 57, 1406 (1990).Google Scholar
2.Guyader, P., Joubert, P., Guendouz, M., and Sarret, M., Appl. Phys. Lett. 65, 1787 (1994).Google Scholar
3.Kalkhoran, N.M., Namavar, F., and Maruska, H.P., Appl. Phys. Lett. 63, 2661 (1993).Google Scholar
4.Higa, K., Asano, T. and Miyssato, T., Jpn. J. Appl. Phys. 33, 1733 (1990).Google Scholar
5.Ueno, T., Akiba, Y., Shinohara, T., Koyama, H., Koshida, N. and Tarui, Y., Jpn. J. Appl. Phys. 32, L5 (1993).Google Scholar
6.Steckl, A.J., Xu, J. and Mogul, H.C., Appl. Phys. Lett. 62, 2111 (1993).Google Scholar
7.Kolie, Y., Gauthier, R., Garcia Perez, M.A., Sibai, A., Dupuy, J.C., Pinard, P., Ghieth, R.M. and Maaref, H., Thin Solid Films 255, 159 (1995).Google Scholar
8.Joubert, P., Abouliatim, A., Guyader, P., Briand, D., Lambert, B. and Guendouz, M., Thin Solid Films 255, 96 (1995).Google Scholar
9.Jung, K.H., Shih, S., Kwong, D.L., Cho, C.C. and Gnade, B.E., Appl. Phys. Lett. 61, 2467 (1992).Google Scholar
10.Bustarret, E., Ligeon, M., Bruyere, J.C., Muller, F., Herino, R., Gaspard, F., Ortega, L. and Stutzmann, M., Appl Phys. Lett. 61, 1552 (1992).Google Scholar
11.Czaputa, R., Fritzl, R. and Popitsch, A., Thin Solid Films 255, 212215, (1995).Google Scholar
12.Han, P.G., Poon, M C, ko, P K and Sin, J K O, J. Vac. Sci. Technol. B 14(2), Mar/Apr 1996Google Scholar
13.Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M., Solid state Commun., 81, 307, (1992).Google Scholar