Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T14:46:55.624Z Has data issue: false hasContentIssue false

Characterization of InGaAs/Inp Epitaxial Layers Grown Over V-Groove Patterned Inp Substrates Using Gas Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 February 2011

N.J. Bulitka
Affiliation:
Now with Waterloo Scientific Inc., 419 Phillip St. #9, Waterloo, ON, Canada N2L 3X2
A. Gupta
Affiliation:
McMaster University, Dept. Materials Science and Engineering, Hamilton, ON. L8S 4M1
B.J. Robinson
Affiliation:
McMaster University, Centre for Electrophotonic Materials and Devices, Hamilton, ON L8S 4L7
D.A. Thompson
Affiliation:
McMaster University, Centre for Electrophotonic Materials and Devices, Hamilton, ON L8S 4L7
G.C. Weatherly
Affiliation:
McMaster University, Dept. Materials Science and Engineering, Hamilton, ON. L8S 4M1
J.G. Simmons
Affiliation:
McMaster University, Centre for Electrophotonic Materials and Devices, Hamilton, ON L8S 4L7
Get access

Abstract

Gas source molecular beam epitaxy has been used to deposit single InP layers, and multiple layers of InGaAs/InP over V-groove patterned (100) InP substrates. The V-grooves were defined by the (211)A and (111)B family of crystal planes. Scanning electron microscopy, transmission electron microscopy, and scanning photoluminescence were used to characterize the variation in the composition and thickness of the epitaxial layers. Defect-free epitaxial layers were achieved within (211)A V-grooves; whereas, dislocations were observed in the InGaAs layers deposited within (111)B grooves. The dislocations are attributed to the large lattice mismatch caused by a variation in composition due to differential Group111 diffusion on the groove sidewalls. Scanning photoluminescence indicates an In (100) diffusion length of 2.2-3.5\lm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bhat, R., Semicond. Sci. Technol., 8, 985, (1993).Google Scholar
2 Jones, S.H., Seidel, L.K., Lau, K.M., and Harold, M., J. Crystal Growth, 108, 73, (1991).Google Scholar
3 Kojima, K., Mitsunaga, K., and Kyuma, K., Appl. Phys. Lett. 56, 154, (1990).Google Scholar
4 Garret, B. and Thrush, E.J., J. Crystal Growth, 97, 273, (1989).Google Scholar
5 Bulitka, N.J., M.Eng. thesis, McMaster University, 1993.Google Scholar
6 Kapon, E., Walther, M., Christen, J., Grundmann, M., Caneau, C., Hwang, D.M., Colas, E., Bhat, R., Song, G.H., and Bimberg, D., Superlattices and Microstructures, 12, 491, (1992).Google Scholar
7 Galeuchet, Y.D., Roentgen, P., and Graf, V., 53, 2638, (1988).Google Scholar
8 Henini, M., III-Vs Review, 6, 50, (1993).Google Scholar
9 Kapon, E., Hwang, D.M., and Bhat, R., Phys. Rev. Lett. 63, 430, (1989).Google Scholar
10 Corcoran, E., Scientific American, 11, 122, (1990).Google Scholar
11 Huo, D.T., Wynn, J.D., Napholtz, S.G., and Wilt, D.P., J. Electrochem. Soc. 135, 1231, (1988).Google Scholar
12 Dautremont-Smith, W.C., Wilt, W.P., International Patent No. WO86/01367 (13 Mar. 1986).Google Scholar
13 Huo, H.Q. and Tu, C.W., Appl. Phys. Lett. 63, 280, (1993).Google Scholar
14 Herman, M.A. and Sitter, H., Molecular Beam Epitaxy: Fundementals and Current Status. (Springer-Verlag, New York, 1989), p. 229.Google Scholar
15 Bhat, R., Kapon, E., Werner, J., Hwang, D.M., and N.G, Stoffel, and Koza, M.A., Appl. Phys Lett. 56, 863, (1990).Google Scholar
16 Bhat, R., Kapon, E., Simphony, S., Kolas, E., Hwang, D.M., Stoffel, N.G., and Koza, M.A., Crystal Growth, J., 107, 716, (1991).Google Scholar
17 Bassignana, I.C., Miner, C.J., and Puetz, N., J. Appl. Phys. 65, 4299, (1989).Google Scholar