Published online by Cambridge University Press: 19 August 2014
Copper nanoparticles are synthesized successfully through chemical reduction of different copper salts stabilized by Ocimum Sanctum Leaf extract, a natural biopolymer. The resulting copper nanoparticles are characterized by using UV Visible Absorption Spectrometer, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Small Angle X-ray Scattering (SAXS) and Fourier Transform Infrared Spectroscopy (FTIR) experiments. Copper nanoparticles prepared display an absorption peak at around 558 nm. X-ray diffraction analysis shows that the particles are FCC crystalline. SEM and TEM display the formation of copper nanoparticles with an average size of 10 nm. The SAXS studies demonstrate the formation of spherical nanoparticles with bimodal size distribution. The FTIR spectrum analysis has confirmed the presence of functional groups of stabilizer Ocimum Sanctum leaf extract in capping the copper nanoparticles.