Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T22:05:13.109Z Has data issue: false hasContentIssue false

Characterization of CVD Diamond Films Used for Radiation Detection.

Published online by Cambridge University Press:  21 February 2011

F. Foulon
Affiliation:
LETI (CEA - Technologies Avancées) / DEIN / SPE, Centre d'Etudes de Saclay, 91191 Gif- sur-Yvette, France.
T. Pochet
Affiliation:
LETI (CEA - Technologies Avancées) / DEIN / SPE, Centre d'Etudes de Saclay, 91191 Gif- sur-Yvette, France.
E. Gheeraert
Affiliation:
Laboratoire d'Etudes des Propriétés Electroniques des Solides, CNRS, B.P. 166, 38042 Grenoble Cedex 9, France.
A. Deneuville
Affiliation:
Laboratoire d'Etudes des Propriétés Electroniques des Solides, CNRS, B.P. 166, 38042 Grenoble Cedex 9, France.
Get access

Abstract

Diamond films produced by microwave plasma enhanced chemical vapor deposition (CVD) technique and used to fabricate radiation detectors have been characterized. The polycrystalline diamond films have a measured resistivity of 1012 Ω.cm and a carrier lifetime of about 530 ps. The carrier mobility - lifetime product depends on the density of photogenerated carriers. The carrier mobility decreases from 160 to 13 cm2/V.s for a carrier density increase from 2 × 1011 cm-3 to 3.7 × 1013 cm-3. The detector response to laser pulses (λ= 355, 532 and 1064 nm), X-ray flux (2.5 – 16 keV) and alpha particles (241Am, 5.49 MeV) has been investigated. The response speed of the detector is in the 100 ps range. X-ray photon flux measurements and alpha particle counting capabilities of the CVD diamond detectors are demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sze, S.M., Physic of semiconductor devices. New York: John Wiley, 1981.Google Scholar
2 Wilson, W.B., Phys. Rev., 127, 1549 (1962).Google Scholar
3 Denham, P., Lightowlers, E.C. and Dean, P.J., Phys. Rev. 161, 762 (1967).Google Scholar
4 Baraff, G.A., Phys. Rev. A 26, 133 (1964).Google Scholar
5 Kozlov, S.P., Konorova, E.A., Barinov, A.L. and Jarkov, V.P., IEEE Trans. Nuc. Sci. NS–22, 171 (1975).Google Scholar
6 Kozlov, S.P., Bachurin, A.V., Petrusev, S.S. and Fedorovsky, Y.P., IEEE Trans. Nuc. Sci. NS–24, 240 (1977).Google Scholar
7 Kania, D.R., Pan, L.S., Bell, P., Landen, O.L., Kornblum, H., Pianetta, P. and Perry, M.D., J. Appl. Phys. 68, 124 (1990).Google Scholar
8 Han, S. and al., MRS Symp. Proc. 302, 305 (1993).Google Scholar
9 Grobbelaar, J.H., Burns, R.C., Nam, T.L. and Keddy, R.J., Nucl. Inst. and Meth. B61, 553 (1991).Google Scholar
10 Williams, B.E. and Glass, J.T., J. Mater. Res. 2, 373 (1989).Google Scholar
11 Kaae, J.L., Gantzel, P.K., Chin, J., West, W.P., J. Mater. Res. 5, 1480 (1990).Google Scholar
12 Bachmann, P.K., Leers, D. and Wiechert, D.U., Ber. Bunsenges. Phys. Chem. 95, 1390 (1991).Google Scholar
13 Beetz, C.P., Lincol, B., Winn, D.R., Segali, K., Vasas, M. and Wall, D., IEEE Trans. Nuc. Sci. 38, 107 (1991).Google Scholar
14 Deneuville, A., Gonon, P., Gheeraert, E., Collins, A.T. and Khong, Y.L., Diamond and Related Materials 2, 737 (1993).Google Scholar
15 Jeng, D.G., Tuan, H.S., Salat, R.F., Fricano, G.J., Appl. Phys. Lett. 58, 1271 (1991).Google Scholar
16 Pochet, T., Brullot, B., Galli, R. and Rubbelynck, C., MRS Symp. Proc., 302, 281 (1993).Google Scholar
17 Pan, L.S. et al., MRS Symp. Proc. 302, 245 (1993).Google Scholar
18 Pan, L.S., Kania, D.R., Pianetta, P., Lanstrass, M., Ager, J.W., Han, S. and Landen, O.L., J. Appl. Phys. 73, 2888 (1993).Google Scholar
19 Hubbell, J.H., Int. J. Appl. Radiat. Isot. 33, 1269 (1982).Google Scholar
20 Canali, C., Gatti, E., Kozlov, S.F., Manfredi, P.F., Manfredotti, C., Nava, F. and Quirini, A., Nuc. Instr. and Meth. 160, 73 (1979).Google Scholar