Published online by Cambridge University Press: 21 March 2011
Ruthenium Oxide (RuO2) thin films were prepared on silicon substrates by solution chemistry technique. X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), micro-Raman, X-ray photoelectron spectroscopy (XPS), and four probe Van-der-paw technique were used for the film characterization. X-ray analysis shows a rutile structure in these films. The films annealed at 700°C showed lowest resistivity of 29 × 10−5 ohm-cm. The presence of Eg, A1g, and B2g modes is consistent with the Raman spectrum of rutile phase. These modes as well as additional unidentified band at about 477 cm−1 were investigated by temperature dependent Raman studies. Based on the result, band at 477 cm−1 that disappears above 370 K is attributed to hydrated RuO2 present in the films. XPS analysis show stoichiometric rutile RuO2 present in the films. Small concentrations of RuCl3, RuO3 and hydrated RuO2 were also detected. Pb0.9La0.15TiO3 (PLT15) thin films were deposited on RuO2/Si substrates and characterized for its ferroelectric properties to demonstrate that solution deposition technique offers an alternative approach for preparing high quality RuO2 bottom electrodes.