Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-01T06:25:51.461Z Has data issue: false hasContentIssue false

Characterization of Ceramic Batch Via Capillary Rheometry

Published online by Cambridge University Press:  15 February 2011

Victor F. Janas
Affiliation:
Corning Incorporated, Applied Process Research, EJ-114, Corning, NY 14831
Christopher J. Malarkey
Affiliation:
Corning Incorporated, Applied Process Research, EJ-114, Corning, NY 14831
David R. Treacy
Affiliation:
Corning Incorporated, Applied Process Research, EJ-114, Corning, NY 14831
Michael E. Zak
Affiliation:
Corning Incorporated, Applied Process Research, EJ-114, Corning, NY 14831
Get access

Abstract

Rheological testing has been developed to predict the extrudability of ceramic pastes. Inorganic batches containing cellulosic binders were mixed in a twin screw extruder prior to characterization in a capillary rheometer. Various die lengths were used to separate viscosity from wall slip parameters. A power law model was fit to the paste viscosity. The wall shear stress, assuming 100% slip, was a linear function of the wall velocity. The resulting rheological models were used in fluid flow finite element analysis for determination of extrusion pressure, and the evaluation of binders.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bagley, E. B., J. Appl. Phys. 28 624 (1957).Google Scholar
2. Rabinowitsch, B., Z. Physik. Chem. A145 1 (1929).Google Scholar
3. Nguyen, Q. D., and Boger, D. V., Annu. Rev. Fluid Mech. 24 47 (1992).Google Scholar
4. Cohen, Y., and Metzner, A. B., J. Rheol. 29 67 (1985).Google Scholar
5. Mannheimer, R. J., J. Rheol. 35(1) 113 (1991).Google Scholar
6. Yilmazer, U., and Kalyon, D. M., J. Rheol. 33(8) 1197 (1989).Google Scholar
7. Jiang, T. Q., Young, A. C., and Metzner, A. B., Rheol. Acta 25 397 (1986).Google Scholar
8. Maude, A. D., Whitmore, R. L., Brit. J. App. Phys. 7 98 (1956).Google Scholar
9. Kozicki, W., Pasari, S. N., Rao, A. R. K., and Tiu, C., Chem. Eng. Sci. 25 41 (1970).Google Scholar
10. Mooney, M., J. Rheol. 2 210 (1931).Google Scholar
11. Cheng, D. C., Powder Tech. 37 255 (1984).Google Scholar
12. Benbow, J. J., Lawson, T. A., Oxley, E. W., and Bridgwater, J., Cer. Bull. 68(10) 1821 (1989).Google Scholar
13. Benbow, J. J., Oxley, E. W., and Bridgwater, J., Chem. Eng. Sd. 42(9) 2151 (1987).Google Scholar
14. Benbow, J. J., Chem. Eng. Sci. 26 1467 (1971).Google Scholar
15. Bingham, E. C., Fluidity and Plasticity, McGraw-Hill, New York, (1922).Google Scholar
16. Herschel, W. H., and Bulkley, R., Proc. Am. Soc. Test. Matls. 26 621 (1926).Google Scholar
17. Pfefferkorn Model Plasticimeter from Ceramic Instruments, Sassulo, S. R. I.., Italy.Google Scholar
18. Fluid Dynamics International, Inc., Evanston, ILL.Google Scholar
19. Janas, V. F., Malarkey, C. J., and Treacy, D. R., Presented at the A. Cer. Soc. Materials & Equipment and Whitewares Meeting, Hershey, PA, (1992).Google Scholar