Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T05:53:27.562Z Has data issue: false hasContentIssue false

Characterization of Amorphous Silicon Deposited at high rate by Helium Dilution PECVD and used for Applications in Radiation Detection

Published online by Cambridge University Press:  16 February 2011

A. Ilie
Affiliation:
LETI (CEA-Technologies Avancées) DEIN/SPE, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette cedex, France Laboratoire de Physique des Interfaces et des Couches minces (UPR258 CNRS), Ecole Polytechnique, 91128 Palaiseau cedex, France
T. Pochet
Affiliation:
LETI (CEA-Technologies Avancées) DEIN/SPE, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette cedex, France
F. Foulon
Affiliation:
LETI (CEA-Technologies Avancées) DEIN/SPE, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette cedex, France
B. Equer
Affiliation:
Laboratoire de Physique des Interfaces et des Couches minces (UPR258 CNRS), Ecole Polytechnique, 91128 Palaiseau cedex, France
Get access

Abstract

PECVD hydrogenated Amorphous silicon (a-Si:H) layers have been deposited at high rates using helium dilution of the reacting precursors. This allows the fabrication of very thick layers (a few tens of microns) within reasonable processing times. This technique can be applied to the fabrication of thick p-i-n detector devices to be used for direct X-ray detection. Several p-i-n devices have been processed at deposition rates as high as 15 A/sec without significant changes in the optoelectronic properties of the a-Si:H films. Capacitance-Voltage measurements have been performed in order to measure the residual space charge density in the intrinsic region of the devices. The results demonstrate a moderate increase of the N*DoS concentration with the deposition rate. DC bias photoconductivity measurements have also been performed. The experimental data have been fitted with a multiple trapping transport model for holes. The model parameters have been studied and related to the electronic properties of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

V. REFERENCES

1. Dubeau, J., Pochet, T., Nucl. Inst. & Meth. B 54, 458 (1991).Google Scholar
2. Equer, B., Nucl. Inst. & Meth. A 322, 457 (1992).Google Scholar
3. Perez-Mendez, V., chapter 8 in Physics and Applications of Amorphous and microcristalline semiconductor devices, edited by Kanicki, J. (Artech House Pub., Boston, 1991), p. 297.Google Scholar
4. Pochet, T., in Semiconductors for Room-Temperature Radiation Detector Applications, edited by James, R.B., Schlesinger, T.E., Siffert, P., Franks, L. (Mater. Res. Soc. Proc. 302, San Francisco, 1993) pp. 573578.Google Scholar
5. Cho, G. et al., in Amorphous Silicon Technology, edited by Schiff, E.A. (Mater. Res. Soc. Proc. 297, San Francisco, 1993) pp. 969974.Google Scholar
6. Antonuk, L.E., Yorkston, J., Huang, W., in Amorphous Silicon Technology, edited by Schiff, E.A. (Mater. Res. Soc. Proc. 297, San Francisco, 1993) pp. 945950.Google Scholar
7. Street, R.A., Weisfield, R., Nelson, S., Nylen, P., in Amorphous Silicon Technology, edited by Schiff, E.A. (Mater. Res. Soc. Proc. 297, San Francisco, 1993) pp. 957962.Google Scholar
8. Manfredotti, C, Fizzotti, F., Boero, M., Cannistraci, F., in Semiconductors for Room-Temperature Radiation Detector Applications, edited by James, R.B., Schlesinger, T.E., Siffert, P., Franks, L. (Mater. Res. Soc. Proc. 302, San Francisco, 1993) pp. 543548.Google Scholar
9. Perrin, J., Roca i Cabarrocas, P., Auain, B. and Friedt, J-M., Jpn. J. of Appl. Phys. 27, 2041 (1988).Google Scholar
10. Roca i Cabarrocas, P., in Amorphous Silicon Technology, edited by Madan, A., Thompson, M.J., Taylor, P.C., Hamakawa, Y. and LeComber, P.G. (Mater. Res. Soc. Proc. 149, Pittsburg, PA, 1989) p. 33.Google Scholar
11. Roca i Cabarrocas, P., Morin, P., Chu, V., Conde, J.P., Liu, J.Z., Park, H.R. and Wagner, S., J. Appl. Phys. 69, 2942 (1991).Google Scholar
12. Roca i Cabaroccas, P. et al., Proceedings of the 10th Photovoltaic Solar Energy Conference, Lisbon, April 1991 (Kluwer Academic Publishers) pp. 10831086.Google Scholar
13. Pochet, T., Hie, A., Foulon, F. and Equer, B., IEEE Trans, on Nucl. Science (in press, 94).Google Scholar
14. Kleider, J.P., Mencaraglia, D., Djebbour, Z., J. non-Cryst. Sol. 114, 432 (1989).Google Scholar
15. Qureshi, S., Perez-Mendez, V., Kaplan, S.N., Fujieda, I., Cho, G., IEEE Trans. on Nucl. Science 36, (1989).Google Scholar
16. Tiedje, T., in Semiconductors and Semimetals. Vol. 21-C (Academic Press, 1984) p. 207.Google Scholar
17. Pochet, T., PhD thesis, University of Montreal, 1991.Google Scholar
18. Roca i Cabarrocas, P. et al., J. Phys. I-France 2, 1979 (1992).CrossRefGoogle Scholar