Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-28T08:17:00.402Z Has data issue: false hasContentIssue false

Characterization, Control, and Reduction of Subboundaries in Silicon on Insulators

Published online by Cambridge University Press:  25 February 2011

M. W. Geis
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
C. K. Chen
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
Henry I. Smith
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
R. W. Mountain
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
C. L. Doherty
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
Get access

Abstract

Subboundaries are the major crystalline defects in thin semiconductor films produced by zone-melting recrystallization (ZMR). Using transmission electron microscopy (TEM) and chemical etching we have analyzed the angular discontinuity and defect structure of subboundaries in ZMR Si films. Annealing in oxygen has resulted in the elimination of dislocation bands from sizable regions of some films. Calculations suggest that cellular growth due to constitutional supercooling may not occur in some Si ZMR.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hedges, J. M. and Mitchell, J. W., Phil. Mag. A 44, 223 (1953), and Mitchell, J. W., Proc. R. Soc. London A 371, 149(1980).Google Scholar
2. Maserjian, J., Solid-State Electron. 6, 477 (1963).Google Scholar
3. Jackson, K. A. and Miller, C. E., J. Crystal Growth 42, 364 (1977).Google Scholar
4. Billings, A. R., J. Vac. Sci. Technol. 4, 757 (1969).Google Scholar
5. Wong, C. C., Keavney, C. J., Atwater, H. A., Thompson, C. V., and Smith, H. I., Energy Beam-Solid Interactions and Transient Thermal Processing, Fan, J. C. C. and Johnson, N. M., eds. (Elsevier, North Holland, New York. 1984), p. 627.Google Scholar
6. Sedgwick, T. O., Geiss, R. H., Depp, S. W., Hanchett, V. E., Huth, B. G., Graf, V., and Silvestri, V. J., J. Electrochem. Soc. 129, 2802 (1982).Google Scholar
7. Geis, M. W., Smith, H. I., B-Tsaur, Y., Fan, J. C. C., Silversmith, D. J., and Mountain, R. W., J. Electrochem. Soc. 129, 2812 (1982).Google Scholar
8. Geis, M. W., Smith, H. I., Silversmith, D. J., Mountain, R. W., and Thompson, C. V., J. Electrochem. Soc. 130, 1178 (1983).Google Scholar
9. Davis, J. R., McMahon, R. A., and Ahmed, H., in Laser-Solid Interactions and Transient Thermal Processing of Materials. Narayan, J., Brown, W. L., and Lemons, R. A., eds. (Elsevier North Holland, New York, 1983), p. 563.Google Scholar
10. Chen, C. K., Geis, M. W., Choi, H. K., Tsaur, B-Y., and Fan, J. C. C., in Energy Beam-Solid Interactions and Transient Thermal Processing. Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V., eds. (Materials Research Society, 1985), this volume.Google Scholar
11. Pfeiffer, L., Kovacs, T., and West, K. W., in Energy Beam-Solid Interactions and Transient Thermal Processing, Biegelsen, D. K., Rozgonyi, G. A. and Shank, C. V., eds. (Materials Research Society, 1985), this volume.Google Scholar
12. Atwater, H. A., Smith, H. I., Thompson, C. V., and Geis, M. W., Mater. Lett. 2, 269 (1984).Google Scholar
13. Secco, F. Aragona, D, J. Electrochem. Soc. 119, 948 (1972).Google Scholar
14. Pfeiffer, L. and co-workers have also demonstrated the removal of isolated defects in ZMR Si films by annealing (personal communication).Google Scholar
15. Leamy, H. J., Chang, C. C., Baumgart, H., Lemons, R. A., and Cheng, J., Mater. Lett. 1, 33 (1982).Google Scholar
16. Lemons, R. A., Bosh, M. A., and Herbst, D., in Laser-Solid Interactions and Transient Thermal Processing of Materials, Narayan, J., Brown, W. L., and Lemons, R. A., eds. (Elsevier North Holland, New York, 1983), p. 581.Google Scholar
17. Lee, E-H., in Energy Beams-Solid Interactions and Transient Thermal Processing, Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V., eds. (Materials Research Society, 1985), this volume.Google Scholar
18. Fan, J. C. C., Tsaur, B-Y., Chen, C. K., Dick, J. R., and Kazmerski, L. L., Appl. Phys. Lett. 44, 1086 (1984).Google Scholar
19. Pinizzotto, R. F., Clark, F. Y., Malhi, S. D. S., and Shah, R. R., in Comparison of Thin Film Transistors and SOI Technology, Lam, H. W., ed. (Elsevier, North Holland, New York, 1984).Google Scholar
20. Zulehner, W. and Huber, D., "Czochralski-Grown Silicon" in Crystals: Growth, Properties and Applications Vol. 8, Freyhardt, H. C., ed. (Springer-Verlag, New York 1982), pp. 1143.Google Scholar
21. Verhoeven, J. D., Fundamentals of Physical Metallurgy (John Wiley and Sons, New York, 19757).Google Scholar
22. Cline, H. E., J. Appl. Phys. 54, 2683 (1983).Google Scholar
23. Young, F. W. and Savage, J. R., J. Appl. Phys. 35, 1917 (1964).Google Scholar