Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-21T02:48:21.007Z Has data issue: false hasContentIssue false

Characteristics of a phosphorus-doped p-type ZnO film by MBE

Published online by Cambridge University Press:  01 February 2011

Faxian Xiu
Affiliation:
xiuf@ee.ucr.edu, University of California, Riverside, xxx, Riverside, CA, 92521, United States, 9518277723
Zheng Yang
Affiliation:
zyang@ee.ucr.edu
Mandalapu J. Leelaprasanna
Affiliation:
leela@ee.ucr.edu
Jianlin Liu
Affiliation:
jianlin@ee.ucr.edu
Get access

Abstract

A solid-source GaP effusion cell was used to provide phosphorus dopants to achieve p-type ZnO with molecular-beam epitaxy (MBE). Room temperature (RT) Hall-effect measurements reveal that phosphorus-doped ZnO has a strong p-type conduction with a hole concentration of 6.5×1018 cm-3 and a hole mobility of 9.0 cm2/V s. X-ray diffraction measurements show a preferential growth orientation along <11-20> by θ-2θ scan and a tilt of ZnO (11-20) plane relative to the substrate surface by rocking curve and reciprocal space map. Photoluminescence (PL) spectra at 8.5 K show a dominant acceptor-bound exciton emission at 3.319 eV. The acceptor energy level of the phosphorus dopant is calculated to be 0.18 eV above the valence band from PL spectra, which is consistent with the temperature dependence of PL measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S. F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M., Nat. Mater. 4, 42 (2005).CrossRefGoogle Scholar
2. Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002).Google Scholar
3. Hwang, D. K., Kim, H. S., Lim, J. H., Oh, J. Y., Yang, J. H., Park, S. J., Kim, K. K., Look, D. C., and Park, Y. S., Appl. Phys. Lett. 86, 151917 (2005).CrossRefGoogle Scholar
4. Vaithianathan, V., Lee, B. T., and Kim, S. S., Phys. Status Solidi A 201, 2837 (2004).Google Scholar
5. Kim, K. K., Kim, H. S., Hwang, D. K., Lim, J. H., and Park, S. J., Appl. Phys. Lett. 83, 63 (2003).CrossRefGoogle Scholar
6. Ryu, Y. R., Lee, T. S., and White, H. W., Appl. Phys. Lett. 83, 87 (2003).Google Scholar
7. Jeong, T. S., Han, M. S., Youn, C. J., and Park, Y. S., J. Appl. Phys. 96, 175 (2004).Google Scholar
8. Xiu, F. X., Yang, Z., Mandalapu, L. J., Zhao, D. T., Liu, J. L., and Beyermann, W. P., Appl. Phys. Lett. 87, 152101 (2005).Google Scholar
9. Xiu, F. X., Yang, Z., Mandalapu, L. J., Zhao, D. T., and Liu, J. L., Appl. Phys. Lett. (In press).Google Scholar
10. Xiu, F. X., Yang, Z., Mandalapu, L. J., Liu, J. L., and Beyermann, W. P., Appl. Phys. Lett. (In press).Google Scholar
11. Zhang, S. B., Wei, S. H., and Zunger, A., Phys. Rev. B 63, 075205 (2001).Google Scholar
12. Van de Walle, C. G., Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
13. Sheng, H., Muthukumar, S., Emanetoglu, N. W., and Lu, Y., Appl. Phys. Lett. 80, 2132 (2002).Google Scholar
14. Zuniga-Perez, J., Munuera, C., Ocal, C., Munoz-Sanjose, V., Cryst, J.. Growth, 271, 223 (2004).CrossRefGoogle Scholar