Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T11:00:42.982Z Has data issue: false hasContentIssue false

CdZnSe/Zn(Be)Se Quantum Dot Structures: Size, Chemical Composition and Phonons

Published online by Cambridge University Press:  01 February 2011

Y. Gu
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027
Igor L. Kuskovsky
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027
J. Fung
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027
R. Robinson
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027
I. P. Herman
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027
G. F. Neumark
Affiliation:
Department of Applied Physics & Applied Mathematics, Columbia University, New York, NY 10027
X. Zhou
Affiliation:
Department of Chemistry, City College of CUNY, New York, NY 10031
S. P. Guo
Affiliation:
Department of Chemistry, City College of CUNY, New York, NY 10031
M. C. Tamargo
Affiliation:
Department of Chemistry, City College of CUNY, New York, NY 10031
Get access

Abstract

The size and chemical composition of optically active CdZnSe/ZnSe and CdZnSe/Zn0.97Be0.03Se quantum dots (QDs) are determined using photoluminescence, photoluminescence excitation and polarized Raman scattering spectroscopies. We show that the addition of Be into the barrier enhances the Cd composition and the quantum size effect of optically active QDs. Additionally, surface phonons from QDs are observed in CdZnSe/ZnBeSe nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Strassburg, M., Deniozou, Th., Hoffmann, A., Heitz, R., Pohl, U. W., Bimberg, D., Litvinov, D., Rosenauer, A., Gerthsen, D., Schwedhelm, S., Lischka, K., and Schikora, D., Appl. Phys. Lett. 76, 685 (2000).Google Scholar
[2] Melnikov, D. V. and Fowler, W. B., Phys. Rev. B 64, 245320 (2001).Google Scholar
[3] Rho, H., Jackson, H. E., Lee, S., Dobrowolska, M., and Furdyna, J. K., Phys. Rev. B 61, 15641 (2000).Google Scholar
[4] Munoz, M., Guo, S. P., Zhou, X., Tamargo, M. C., Huang, Y. S., Trallero-Giner, C., and Rodriguez, A. H., Appl. Phys. Lett. 83, 4399 (2003)Google Scholar
[5] Klein, M. C., Hache, F., Ricard, D., and Flytzanis, C., Phys. Rev. B 42, 11123 (1990).Google Scholar
[6] Hwang, Y.-N., Park, S.-H., and Kim, D., Phys. Rev. B 59, 7285 (1999).Google Scholar
[7] Lowisch, M., Rabe, M., Kreller, F., and Henneberger, F., Appl. Phys. Lett. 74, 2489 (1999).Google Scholar
[8] Roca, E., Trallero-Giner, C., and Cardona, M., Phys. Rev. B 49, 13704 (1994).Google Scholar
[9] Previous time-resolved PL studies [Zhou, X., Tamargo, M. C., Guo, S. P., and Chen, Y. C., J. Electron. Mater. 32, 733 (2003)] show that the for sample A, the PL decay time increases with temperature, indicating a quasi-two-dimensional character; for sample B, the PL decay time stays constant with increasing temperature until T=150K, suggesting zero-dimensional quantum confinement. Therefore, we consider the former to be spherical QDs and the latter to be quantum disks.Google Scholar
[10] Gu, Y., Kuskovsky, Igor L., Fung, J., Robinson, R., Herman, I. P., Neumark, G. F., Zhou, X., Guo, S. P. and Tamargo, M. C., Appl. Phys. Lett. 83, 3779 (2003).Google Scholar
[11] Gu, Y., Kuskovsky, Igor L., Robinson, R., Herman, I. P., Neumark, G. F., Zhou, X., Guo, S. P. and Tamargo, M. C., to be submitted.Google Scholar
[12] Peranio, N., Rosenauer, A., Gerthsen, D., Sorokin, S. V., Sedova, I. V., and Ivanov, S. V., Phys. Rev. B 61, 16105 (2000).Google Scholar
[13] Litvinov, D., Gerthsen, D., Rosenauer, A., Preis, H., Kurtz, E., and Klingshirn, C., Phys. Stat. Sol (b) 224, 147 (2001).Google Scholar
[14] Within the same model (sphere or disk), the change in the barrier bandgap (∼66meV) results only in ∼2meV difference in the PL energy.Google Scholar