Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T01:08:50.968Z Has data issue: false hasContentIssue false

Carbohydrate Protein Conjugates (CPC): The Design of New Materials to Stabilize Enzymes

Published online by Cambridge University Press:  15 February 2011

Tara G. Hill
Affiliation:
The Ohio State University, Department of Chemistry, Columbus, OH 43210
Peng Wang
Affiliation:
University of California at Berkeley, Department of Chemistry, Berkeley, CA 94720 Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Lynn M. Oehlert
Affiliation:
University of California at Berkeley, Department of Chemistry, Berkeley, CA 94720 Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Michael E. Huston
Affiliation:
The Ohio State University, Department of Chemistry, Columbus, OH 43210
Charles A. Wartchow
Affiliation:
The Ohio State University, Department of Chemistry, Columbus, OH 43210
M. Bradley Smith
Affiliation:
The Ohio State University, Department of Chemistry, Columbus, OH 43210
Mark D. Bednarski
Affiliation:
University of California at Berkeley, Department of Chemistry, Berkeley, CA 94720 Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Matthew R. Callstromt
Affiliation:
The Ohio State University, Department of Chemistry, Columbus, OH 43210 Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Extract

Intense efforts have been directed at the stabilization of proteins because of their potential uses in organic synthesis, diagnostics, and the pharmaceutical industry. These efforts have resulted in a number of methods to stabilize enzymes including adsorbtion on inert supports or ion exchange resins, entrapment within a gel (with or without crosslinking of the gel or protein), covalent attachment to beads or polymeric supports, inclusion in micelles, chemical derivatization of the protein and mutagenesis. However, these methods do not provide a general approach to solving the problem of protein stability. We believed that the multi-site attachment of a carbohydrate-based macromolecule to the surface of a protein would provide structural stability and a water-like microenvironment for the protein under harsh reaction conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References and Footnotes

1. For selected reviews on enzyme immobilization methods and studies on immobilized enzymes, see: Chibata, I. Immobilized Enzymes; Halsted Press: New York; 1978. Trevan, M. D. Immobilized Enzymes; Wiley: New York; 1980. Zaborsky, O. R. Immobilized Enzymes; CRC Precs: Cleveland; 1973. Inaki, Y. In Functional Monomers and Polymers; Takemoto, K.; Inaki, Y.; Ottenbrite, R. M., Eds.; Dekker. New York; 1987; p 461. Mosbach, K. Meth. Enzymol. 1976, 44, 999. Larson, P.-O.; Mosbach, K. Meth. Enzymol. 1976, 44, 183. Chang, T. M. S. Meth. Enzymol. 1976, 44, 201. Chibata, I.; Fukui, S.; Wingard, L. B., Jr. Eds. Enzyme Engineering; Plenum: New York; 1982; Vol.6. Carr, P. W.; Bowers, L. D.; Immobilized Enzymes in Analytical and Clinical Chemistry; Wiley: New York; 1980. Katchalski, E.; Silman, I.; Goldman, R. Adv. Enzymol. 1971, 34, 445.Google Scholar
2. For selected reviews and recent examples on the use of mutagenesis for enzyme stabilization, see: Malcolm, B. A.; Wilson, K. P.; Matthews, B. W.; Kirsch, J. F.; Wilson, A. C. Nature 1990, 345, 86. Wong, C. -IL; Chen, S. -T.; Hennen, W. J.; Bibbs, J. A.; Wang, Y. -F.; Liu, J. L. -C.; Pantoliano, M. W.; Whitlow, M.; Bryan, P. N. J. Am. Chem. Soc. 1990, 112,945. Rollence, M. L.; Filpula, D.; Pantoliano, M. W.; Bryan, P. N. CRC Crit. Rev. Biotechnol. 1988, 8, 217. Alber, T.; Dao-pin, S.; Wilson, K.; Wozniak, J. A.; Cook, S. P.; Matthews, B. W. Nature 1987, 330, 41. Matthews, B. W.; Nicholson, I-L; Becktel, W. J. Proc. Natl. Acad. Sci. USA 1987, 84, 6663. Pantoliano, M. W.; Ladner, R. C.; Bryan, P. N.; Rollence, M. L.; Wood, J. F.; Poulos, T. L. Biochemistry 1987, 26, 2077. Cunningham, B. C.; Wells, J. A. Protein Eng. 1987, 1, 319. Matsumura, M.; Yasumura, S.; Aiba, S. Narure 1986, 323, 356. Bryan, P. N.; Rollence, M. L.; Pantoliano, M. W.; Wood, J., Finzel, B. C.; Gilliland, G. L.; Howard, A. J.; Poulos, T. L. Proteins: Struct., Funct., Genet. 1986, 1, 326. Hecht, M. H.; Sturtevant, J. M.; Sauer, R. T. Proteins: Struct., Funct., Genet. 1986, 1, 43. Liao, H.; McKenzie, T.; Hageman, R. Proc. Natl. Acad. Sci. USA 1986, 83, 576. Shortle, D.; Lin, Et. Genetics 1985, 110, 539. Perry, L. J.; Wetzel, R. Science 1984, 226, 555. Villafranca, J. E.; Howell, E. E.; Voet, D. H.; Strobel, M. S.; Ogden, R. C.; Abelson, J. N.; Kraut, J. Science 1983, 222, 782.Google Scholar
3. Spectral data for 1a: IR (KBr): 3350, 2925, 1720, 1650, 1615, 1540, 1430, 1360, 1328, 1261, 1215, 1130, 1111, 1078, 1058, 1021, 960, 910, 860, 790, 775, 699 cm−1; 1H NMR (250 MHz, D2O) A 1:1 mixture of α and β anomers, α anomer δ 1.86 (m, 3 H), 3.42 (m, 1 H), 3.71 (m, 2 H), 3.76 (m, 1 H), 3.78 (m, 1 H), 3.89 (dd, J = 3.5 and 10.8 Hz, 1 H), 5.16 (d, J = 3.5 Hz, 1 H), 5.40 (m, 1 H), 5.63 (m, 1 H); β anomer: δ 1.86 (m, 3 H), 3.40 (m, 1 H), 3.55 (m, 1 H), 3.67 (m, 1 H), 3.69 (m, 1 H), 3.81 (m, 1 H), 4.71 (d, J = 8.4 Hz, 1 H), 5.40 (m, 1 H), 5.63 (m, 1 H); 13C NMR (62.9 MHz, D2O) A 1:1 mixture of α and β anomers, δ 20.60 (q), 20.63 (q), 57.14 (d), 59.75 (d), 63.49 (t), 63.65 (t), 72.84 (d), 73.03 (d), 73.41 (d), 74.45 (d), 76.59 (d), 78.82 (d), 93.71 (d), 97.72 (d), 123.93 (t), 124.10 (t), 141.92 (s), 142.17 (s), 175.29 (s), 175.47 (s). Anal. Calcd for C22H49NO6Si4 (α- and β-2-deoxy-2-N-methacrylamido-1,3,4,6- tetra-O-trimethylsilyl-D-glucose): C, 49.35; H, 9.16. Found: C, 49.20; H, 9.28. Spectral data for 2a: IR (KBr): 3337, 2927, 1747, 1657, 1612, 1544, 1452, 1378, 1327, 1277, 1214, 1157, 1052, 935, 872, 805 cm−1; 1H NMR: (250 MHz, D2O) δ 1.88 (s, 3 H), 3.2–4.5 (complex, 7 H), 5.17 (d, J = 3.62 Hz, 1 H), 5.40 (s, 1 H), 5.65 (s, 1 H); 13C NMR: (62.9 MHz, D2O) A mixture of α and β anomers, δ 20.36 (q), 20.74 (q), 56.87 (d), 57.28 (d), 60.24 (d), 63.46 (t), 63.66 (t), 70.67 (d), 70.83 (d), 72.57 (d), 74.15 (d), 79.98 (d), 101.64 (d), 106.71 (d), 123.94 (t), 124.01 (t), 142.18 (s, area 2), 175.74 (s), 175.93 (s). Anal. Calcd for C22H49 NO6Si4 (α- and β-3-deoxy-3-N-methacrylamido-1,2,4,6-tetra-O-trimethylsilyl-D-glucose): C, 49.35; H, 9.16. Found: C, 49.10; H, 9.23. Spectral data for 3a: IR (KBr): 3364, 2914, 1722, 1648, 1609, 1524, 1444, 1364, 1319, 1244, 1214, 1137, 1069, 1040, 924, 794, 737 cm−1; 1H NMR (250 MHz, D2O) δ 1.74 (s, 3 H), 3.0–3.6 (complex, 7 H), 4.14 (d, J = 8.22 Hz, 1 H), 5.25 (s, 1 H), 5.48 (s, 1 H); 13C NMR (75.5 MHz, D2O) δ 18.04 (q, area 2), 40.52 (t), 40.70 (t), 70.16 (d), 71.51 (d), 71.79 (d), 71.84 (d), 73.30 (d), 73.50 (d), 74.23 (d), 75.98 (d), 99.31 (d), 103.39 (d), 121.41 (t, area 2), 139.29 (s, area 2), 172.39 (s), 172.46 (s); HRMS m/z for C22H49NO6Si4 (α- and β-6-deoxy-6-N-methacrylamido-1,2,3,4-tetra-O-trimethylsilyl-D-glucose), calcd 520.2403 [(M-CH3)+], found 520.2439.Google Scholar
4. Spectral data for 1b: IR (KBr) 3371, 2926, 1747, 1631, 1547, 1301, 1201, 1146, 1033, 988, 846, 771 cm−1; 1H NMR (250 MHz, D2O) δ 0.92 (br), 1.73 (br), 3.34 (br), 3.73 (br), 4.98 (d br); 13C NMR (125.8 MNz, D2O) δ 17.51 (q), 45.49 (s), 46.21 (t), 55.33 (d), 61.54 (t), 71.23 (d, area 2), 72.41 (d), 91.06 (d), 180.08 (s). Anal. Calcd for C10H17NO6•H2O: C, 45.28; H, 7.17. Found: C, 43.90; H, 7.59. Gel permeation chromatography found Mn = 4.3 × 106 (Z = 1.3). Spectral data for 2b: IR (KBr) 3356, 2926, 1726, 1639, 1560, 1303, 1201, 1078, 869, 844 cm−1; 1H NMR (250 MHz, D2O) δ 1.1 (br), 1.8 (br), 3.0–4.2 (m), 4.8 (br), 5.1 (br); 13C NMR (62.5 MHz, D2O) δ 19.65 (q), 47.34 (s), 48.00 (t), 57.02 (d), 59.74 (t), 62.71 (d, area 2), 70.17 (d), 93.38(d), 182.27 (s). Anal. Calcd for C10H17NO6•H2O: C, 45.28; H, 7.17. Found: C, 45.59; H, 7.48. Gel permeation chromatography found Mn = 4.2 × 106 (Z = 1.4). Spectral data for 3b: IR (KBr) 3327, 2924, 1727, 1637, 1541, 1442, 1280, 1197, 1132, 1052, 883, 814 cm−1; 1H NMR (200 MHz, D2O) δ 0.90 (br), 1.73 (br), 3.19 (br), 3.41 (br), 3.63 (br), 4.03 (br), 5.17 (br). 13C NMR (62.5 MHz, D2O) δ 17.82 (q), 42.48 (t, area 2), 46.11 (s), 73.10 (d, area 2), 74.06 (d), 75.44 (d), 76.71 (d), 180.55 (s). Anal. Calcd for C10H17NO6: C, 48.58; H, 6.88. Found: C, 48.78; H, 7.10. Gel permeation chromatography found Mn = 3.8 × 107 (Z = 1.3).Google Scholar
5. The preparation of lb has been reported previously, see: Imakura, Y.; Imai, Y.; Yagi, K. J. Polym. Sci. Part A-1 1968, 6, 1625. Klein, J.; Herzog. D. Makromol. Chem. 1987, 188, 1217. For references to other carbohydrate-based polymeric materials, see: Klein, J. Makromol. Chem., Rapid Commun. 1986, 7, 621. Klein, J.; Herzog, D.; Hajibegli, A. Makromol. Chem., Rapid Commun. 1985, 6, 675. Kobayashi, K.; Sumitomo, H. Ina, Y. Polym. J. 1985, 17, 567. Kochetkov, N. K. Pure & Appl. Chem. 1984, 56, 923. Emmerling, W. N.; Pfannemuller, B. Makromol. Chem. 1983, 184, 1441. Kobayashi, K.; Sumitomo, H. Ina, Y. Polym. J. 1983, 15, 667. Black, W. A. P.; Dewar, E. T.; Rutherford, D. J. Chem. Soc. 1963, 4433. Black, W. A. P.; Dewar, E. T.; Rutherford, D. Chem. Ind. 1962, 1624. Kimura, S.; Hirai, K.; Imoto, M. J. Chem. Soc. Jpn., Ind. Chem. Sect. 1962, 65, 688. Imoto, M.; Kimura, S. Makromol. Chem. 1962, 53, 210. Whistler, R. L.; Panzer, H. P.; Goatley, J. L. J. Org. Chem. 1962, 27, 2961. Kimura, S.; Imoto, M. Makromol. Chem. 1961, 50, 155. Kimura, S.; Hirai, K. Makromol. Chem. 1961, 50, 232. Bird, T. P.; Black, W. A. P.; Dewar, E. T.; Rutherford, D. Chem. Ind. 1960, 1331. Helferich, B; Hofmann, H. -J. Chem. Ber. 1952, 85, 175.Google Scholar
6. Absolute molecular weight measurements were made using gel filtration chromatography with a Wyatt Technology DAWN-F laser light scattering detector.Google Scholar
7. Gray, G. R. Arch. Biochem. Biophys. 1974, 163, 426. Schwartz, B. A.; Gray, G. R. Arch. Biochem. Biophys. 1977, 181, 542. Gray, G. R.; Schwartz, B. A.; Kamicker, B. J. Cell Surf. Carbohydr. Biol. Recog. 1978, 583, Roy, R.; Katzenellenbogen, E. Jennings, H. J. Can. J. Biochem. Cell Biol. 1984, 62, 270.Google Scholar
8. The 1-CPC(ENZYME)-3-CPC(ENZYME) materials were purified by gel filtration chromatography using 0.05 M sodium borate solution at pH 8 on Sephacryl HR-200 at a flow rate of 1.5 mL/min. Alternatively, isolation by dialysis of the reaction solution using Spectra Por CE lOOK MWCO membrane against 2 × 500 mL of 0.05 M sodium borate at pH 8 for approximately 48 h gave approximately 40% yields for α-cachymotrypsin (E.C. 3.4.21.1, Sigma) and trypsin (E.C. 3.4.21.4, Sigma) conjugates and approximately 10% yields (60% recovered activity) for subtilisin BPN' (Type XXVII, Sigma) conjugates. The yields were determined by measurement of-iheir relative activity at 25°C with N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe p-nitroanilide as the substrate in 0.05 M sodium borate at pH 8 containing 10% methanol.Google Scholar
9. DelMar, E. G.; Largman, C.; Brodrick, J. W.; Geokas, M. C. Anal. Biochem. 1979, 99, 316.CrossRefGoogle Scholar
10. Schonbaum, G. R.; Zemer, B.; Bender, M. L. J. Biol. Chem. 1961, 236, 2930.Google Scholar
11. Erlanger, B. F.; Kokowsky, N.; Cohen, W. Arch. Biochem. Biophys. 1961, 95, 271.Google Scholar
12. Bender, M. L.; Begue-Canton, M. L.; Blakeley, R. L.; Brubacher, L. J.; Feder, J.; Gunter, C. R.; Kezdy, F. J.; Killheffer, J. V. Jr; Marshall, T. H.; Miller, C. G.; Roeske, R. W.; Stoops, J. K. J. Am. Chem. Soc. 1966, 88, 5890.Google Scholar
13. Thomas, P. G.; Russell, A. J.; Fersht, A. R. Nature 1985, 318, 375.Google Scholar
14. This value is a lower limit from the amino acid analysis integration of unreacted lysine residues.Google Scholar
15. Aliquots of the reaction mixture were allowed to cool to room temperature and the relative Vmax was measured at 25°C using N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe p-nitroanilide as the substrate for α-chymotrypsin and subtilisin BPN' and -benzoyl-Dl-arginine p-nitroanilide as the substrate for trypsin in 0.05 M sodium borate at pH 8 containing 10% methanol.Google Scholar
16. Circular dichroism analyses at elevated temperatures were carried out with a Jasco J-500C spectrometer fitted with a thermostated cell. Both α-chymotrypsin and 1-CPC(CT) were examined and their activities determined throughout the experiment with the same solutions.17 Google Scholar
17. Lasch, J.; Bessmertnaya, L.; Kozlov, L. V.; Antonov, V. K. Eur. J. Biochem. 1976, 63, 591.Google Scholar