Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T08:57:50.248Z Has data issue: false hasContentIssue false

Capacity contribution of the interfacial layer on anode current collectors and their electrochemical properties in Lithium ion batteries

Published online by Cambridge University Press:  07 July 2011

Tae Kwon Kim
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
Wei Chen
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
Chunhui Chen
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
Chunlei Wang*
Affiliation:
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
Get access

Abstract

Current collectors in lithium ion batteries are considered to give the electronic conduction to the electrode materials without electrochemical reactions. However, once the current collectors are thermally treated with active electrode materials, thermally treated current collectors might induce electrochemical reaction that affects the whole cell performance due to the interfacial layer formed by the thermal treatment. In this work, Ni foam and Cu foil current collectors were investigated to understand their capacity contribution and electrochemical properties after thermal treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Whittingham, M. S, MRS Bull. 33(4) (2008) 411419.Google Scholar
[2] Patil, A., Patil, V., Shin, D.W., Choi, J.W., Paik, D.S., Yoon, S.J., Mater. Res. Bull. 43 (2008) 19131942.Google Scholar
[3] Hassoum, J., Reale, P., Scrosati, B., J. Mater. Chem. 17 (2007) 36683677.Google Scholar
[4] Grugeon, S., Laruelle, S., Herrera-Urbina, R., Dupont, L., Poizot, P., Tarascon, J.M., J. Eelctrochem. Soc. 148 (2001) A285.Google Scholar
[5] Debart, A., Dupont, L., Poizot, P., Leriche, J.B., Tarascon, J.M., J.Electrochem. Soc. 148 (2001) A1266.Google Scholar
[6] Laruelle, S., Grugeon, S., Poizot, P., Dolle, M., Dupont, L., Tarascon, J.M., J. Electrochem. Soc. 149 (2002) A627.Google Scholar
[7] Dolle, M., Poizot, P., Dupont, L., Tarascon, J.M., Electrochem, Solid-State Lett. 5 (2002) A18.Google Scholar
[8] Podhajecky, P., Electrochim. Acta 35 (1990) 245.Google Scholar
[9] Zou, G.F., Li, H., Zhang, D.W., Xiong, K., Dong, C., Qian, Y.T., J.Phys. Chem. B 110 (2006) 1632.Google Scholar
[10] Liu, B., Zeng, H.C., J.Am. Chem. Soc. 126 (2004) 8124.Google Scholar
[11] Zhang, D.W., Yi, T.H., Chen, C.H., Nanotechnology 16 (2005) 2338.Google Scholar
[12] Li, X., Dhanabalan, A., Bechtold, K., Wang, C., Electrochem. Commun. 12 (2010) 12221225.Google Scholar
[13] Debart, A., Dupont, L., Poizot, P., Leriche, J.B., Tarascon, J.M., J.Electrochem. Soc. 148 (2001) A1266.Google Scholar
[14] Huang, X.H., Tu, J.P., Zhang, B., Zhang, C.Q., Li, Y., Yuan, Y.F., Wu, H.M., J.Power Sourcces. 161 (2006) 541544.Google Scholar
[15] Needham, S.A., Wang, G.X., Lui, H.K., J.Power Sources. 159 (2006) 254257.Google Scholar