Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T03:58:36.728Z Has data issue: false hasContentIssue false

C60 Transformations at High Pressures

Published online by Cambridge University Press:  25 February 2011

C. S. Yoo
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
W. J. Nellis
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
M. L. Sattler
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
R. G. Musket
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
N. Hinsey
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
W. Brocious
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Get access

Abstract

C60 molecules have been studied at both shock and static high pressures. Under shock compressions C60 fullerenes are stable into the 13-17 GPa pressure range. The onset of a fast (∼0.5 μs) reconstructive transformation to graphite occurs near 17 GPa. The graphite recovered from 27 GPa and about 900 K is relatively well ordered with La = 100 Å. Above 50 GPa a continuous transformationto an amorphous state is observed in recovered specimens. A transparent, metastable carbon phase was recovered from thin films of C60, shocked to 69 GPa and 2200 K and then rapidly quenched to 1000 K. The selected area diffraction patterns indicate thatthe metastable carbon contains an amorphous diamond and n-diamond. Under hydrostatic compressions C60 molecules transform reversibly to a semi-transparent phase in the pressure range of 15-25 GPa with a large pressure hysteresis. The high pressure phaseconsists of interconnected strongly interacting C60 agglomerates, or networksof fullerenes, whose stability continuously increases with increase of pressure. Above 27 GPa the transition becomes irreversible, and the material recovered from high pressureis metastable and diamond-like at ambient conditions. These pressure-induced transitions are explained in terms of nr-electron rehybridization between C60 molecules, which occurs at substantially decreased intermolecular distances.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H., Science 242, 1139 (1988); W.R. Kratschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffmann, Nature 347, 354 (1990).Google Scholar
2. Erskine, D.J. and Nellis, W.J., Nature 349, 317 (1991); F.P. Bundy, J. Chem. Phys. 46, 3437 (1967).CrossRefGoogle Scholar
3. Hirai, H. and Kondo, K.I., Science 253, 772 (1991).Google Scholar
4. Utsumi, W. and Yagi, T., Science 252, 1542 (1991).Google Scholar
5. Duclos, S.J., Brister, K., Haddon, R.C., Kortan, F.A., and Thiel, F.A., Nature 351, 380 (1991); R.S. Ruoff and A.L. Ruoff, Appl. Phys. Lett. 52, 1553 (1991).CrossRefGoogle Scholar
6. Gust, W.H., Phys. Rev. B22, 4744 (1980).CrossRefGoogle Scholar
7. Mitchell, A.C. and Nellis, W.J., J. Appl. Phys. 52, 3363 (1981)CrossRefGoogle Scholar
8. Thiel, M. van. and Ree, F.H., Int. J. of Thermophysics. 10, 227 (1989).CrossRefGoogle Scholar
9. Jephcoat, A.P., Mao, H.K. and Bell, P.M., Hydrothermal Experimental Techniques, edited by Ulmer, G.C. and Barnes, H.L., (Wiley-Interscience, New York, 1987) 469506.Google Scholar
10. Barnett, J.D., Block, S., Piermarini, G.J., Rev. Sci. Instrum. 44, 441 (1973).Google Scholar
11. Knight, D.S. ans White, W.B., J. Material Res. 4. 385 (1989).CrossRefGoogle Scholar
12. Yoo, C.S. and Nellis, W.J., Science 254, 1489 (1991).Google Scholar
13. Regueiro, M.N., Monceau, P., and Hodeau, J.-L., Nature 355, 237 (1992).CrossRefGoogle Scholar
14. Yoo, C.S., Nellis, W.J., Sattler, M.L., and Musket, R.G., submitted to J. Appl. Phys. (1992).Google Scholar
15. Wada, N., Gaczi, P.J., and Solin, S.A., J. Noncryst. Solids 35&36, 543 (1980); M. Ramsteiner, J. Wagner, Ch. Wild, and P. Koidl, J. Appl. Phys. 2, 729 (1987)CrossRefGoogle Scholar
16. Stanton, R.E. and Newton, M.D., J. Phys. Chem. 92, 2141 (1988); W.G. Harter andD.E. Weeks, J. Chem. Phys..9Q, 4727 (1989) and ibid 90, 4744 (1989)Google Scholar
17. Beeman, D., Silverman, J., Lynds, R., and Anderson, M.R., Phys. Rev. B30, 870 (1984).Google Scholar