Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T16:04:07.871Z Has data issue: false hasContentIssue false

Buried Oxide Precipitates In A Si Wafer Due to He ION Implantation and High-Temperature Oxidation

Published online by Cambridge University Press:  17 March 2011

Sadao Nakashima
Affiliation:
NTT Telecommunications Energy Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan
Jyoji Nakata
Affiliation:
Kanagawa University Faculty of Science, 2946, Tsuchiya, Hiratsuka, 259-1293, Japan
Junzou Hayashi
Affiliation:
NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan
Kazuo Imai
Affiliation:
NTT Telecommunications Energy Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan
Get access

Abstract

A new method of producing a buried oxide is proposed. It involves implanting a silicon wafer with helium rather than oxygen ions and then subjecting it to high- temperature oxidation. The voids formed by helium ion implantation and subsequent annealing enhance the diffusion of oxygen atoms into the silicon. The oxygen atoms cause thermal oxide to grow at the void/silicon interface and transform the voids into buried oxide precipitates. Auger electron spectroscopy revealed that the total number of oxygen atoms in the precipitates was 9.3 × 1016 cm−2 and that the peak value of oxygen atom concentration in the wafer was approximately 25%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Omura, Y., Nakashima, S. and Izumi, K., IEICE Trans. Electron. E75–C, 1491 (1992).Google Scholar
2. Ohno, T., Shimaya, M., Izumi, K. and Shiono, N., IEEE Trans. Circuits Devices 3, 21 (1986).Google Scholar
3. Izumi, K., Doken, M. and Ariyoshi, H., Electron. Lett. 14, 593 (1978).Google Scholar
4. Nakashima, S. and Izumi, K., J. Mater. Res. 5, 1918 (1990).Google Scholar
5. Veen, A. V., Griffioen, C. C. and Evans, J. H., Helium-Induced Porous Layer Formation in Silicon, Journal of Materials Research 107, 449 (1988).Google Scholar
6. Raineri, V., Fallica, P. G., Percolla, G., Battaglia, A., Barbagallo, M. and Campisano, S. U., J. Appl. Phys. 78, 3727 (1995).Google Scholar
7. Raineri, V., Battaglia, A. and Rimini, E., Nucl. Instrum. Meth. B96, 249 (1995).Google Scholar
8.Calculated using the stopping and range of ions in matter (SRIM) 96.Google Scholar
9. Nakashima, S., Katayama, T., Miyamura, Y., Matsuzaki, A., Kataoka, M., Ebi, D., Imai, M., Izumi, K. and Ohwada, N., J. Electrochem. Soc. 143, 244 (1996).Google Scholar