Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T13:01:30.313Z Has data issue: false hasContentIssue false

Building Two and Three-dimensional Structures of Colloidal Particles on Surfaces using Optical Tweezers and Critical Point Drying

Published online by Cambridge University Press:  15 March 2011

Dirk L. J. Vossen
Affiliation:
F.O.M. Institute for Atomic and Molecular Physics, Amsterdam, the Netherlands Soft Condensed Matter, Debye Institute, Utrecht University, the Netherlands
Jacob P. Hoogenboom
Affiliation:
F.O.M. Institute for Atomic and Molecular Physics, Amsterdam, the Netherlands Soft Condensed Matter, Debye Institute, Utrecht University, the Netherlands
Karin Overgaag
Affiliation:
F.O.M. Institute for Atomic and Molecular Physics, Amsterdam, the Netherlands Soft Condensed Matter, Debye Institute, Utrecht University, the Netherlands
Alfons van Blaaderen
Affiliation:
F.O.M. Institute for Atomic and Molecular Physics, Amsterdam, the Netherlands Soft Condensed Matter, Debye Institute, Utrecht University, the Netherlands
Get access

Abstract

We describe a method for patterning substrates with colloidal particles in any designed two-dimensional structure. By using optical tweezers particles are brought from a reservoir to a surface that carries a surface charge opposite to that of the particles. Using this technique large, two-dimensional patterns can be created, where the pattern can be manipulated on a single particle level. We show that these structures can be dried using critical point drying thus preventing distortions due to surface tension forces. After drying patterned surfaces can be used for further processing, which includes repeating the procedure of patterning. We show some first results of three-dimensional structures created using this layer-by-layer method. The method is generally applicable and has been demonstrated for a variety of (core-shell) colloidal particles including particles that are interesting for photonic applications like high-refractive index (ZnS)-core – silica shell particles, metallodielectric (gold)-core – silica-shell particles, fluorescently labeled particles and small (several nanometers large) gold particles. Particle sizes used range from a few nanometers to several micrometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blaaderen, A. van, Science 282, 887 (1998).Google Scholar
2. Lu, Y., Yin, Y. D., and Xia, Y.N., Advanced Materials 13, 34 (2001).Google Scholar
3. Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., andH. Atwater, A., Advanced Materials 13, 1501 (2001).Google Scholar
4. Shipway, A. N., Katz, E., and Willner, I., Chemphyschem 1, 18 (2000).Google Scholar
5. Holtz, J. H. and Asher, S. A., Nature 389, 829 (1997).Google Scholar
6. Velev, O. D. and Kaler, E. W., Langmuir 15, 3693 (1999).Google Scholar
7. Burmeister, F., Badowsky, W., Braun, T., Wieprich, S., Boneberg, J., and Leiderer, P., Applied Surface Science 145, 461 (1999).Google Scholar
8. Aizenberg, J., Braun, P. V., and Wiltzius, P., Physical Review Letters 84, 2997 (2000).Google Scholar
9. Blaaderen, A. van, MRS Bulletin 23, 39 (1998).Google Scholar
10. Lin, X. M., Parthasarathy, R., and Jaeger, H. M., Applied Physics Letters 78, 1915 (2001).Google Scholar
11. Won, J., Inaba, T., Masuhara, H., Fujiwara, H., Sasaki, K., Miyawaki, S., and Sato, S., Applied Physics Letters 75, 1506 (1999).Google Scholar
12. Miyazaki, H. T., Miyazaki, H., Ohtaka, K., and Sato, T., Journal of Applied Physics 87, 7152 (2000).Google Scholar
13. Mio, C. and Marr, D. W.M., Langmuir 15, 8565 (1999).Google Scholar
14. Misawa, H., Sasaki, K., Koshioka, M., Kitamura, N., and Masuhara, H., Macromolecules 26, 282 (1993).Google Scholar
15. Hoogenboom, J. P., Vossen, D. L. J., Blaaderen, A. van, Faivre, C., and Dogterom, M., Submitted.Google Scholar
16. Ashkin, A., Dziedic, J. M., Bjorkholm, J. E., and Chu, S., Optics Letters 11, 288 (1986).Google Scholar
17. Visscher, K. and Block, S. M., in Methods in Enzymology, edited by Vallee, R. B. (Academic Press, San Diego, 1997), Vol. 298, p. 460.Google Scholar
18. Blaaderen, A. van and Vrij, A., Langmuir 8, 2921 (1992).Google Scholar
19. Giesche, H., Journal of the European Ceramic Society 14, 205 (1994).Google Scholar
20. Vossen, D. L. J., deDood, M. J.A., Dillen, T. van, Zijlstra, T., vanderDrift, E., Polman, A., and Blaaderen, A. van, Advanced Materials 12, 1434 (2000).Google Scholar
21. Decher, G., Hong, J. D., and Schmitt, J., Thin Solid Films 210, 831 (1992).Google Scholar
22. Caruso, F., Advanced Materials 13, 11 (2001).Google Scholar
23. Garcia-Santamaria, F., Lopez, C., Meseguer, F., Lopez-Tejeira, F., Sanchez-Dehesa, J., and Miyazaki, H. T., Applied Physics Letters 79, 2309 (2001).Google Scholar