Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T04:37:40.662Z Has data issue: false hasContentIssue false

Bright-Pixel Defects in Irradiated CCD Image Sensors

Published online by Cambridge University Press:  01 February 2011

William C McColgin
Affiliation:
William.McColgin@kodak.com, Eastman Kodak Company, Image Sensor Solutions, 1999 Lake Ave, Rochester, NY, 14650-2008, United States
Cristian Tivarus
Affiliation:
cristian.tivarus@kodak.com, Eastman Kodak Company, Image Sensor Solutions, Rochester, NY, 14650, United States
Craig C. Swanson
Affiliation:
craig.swanson@kodak.com, Eastman Kodak Company, Research Laboratories, Rochester, NY, 14650, United States
Albert J. Filo
Affiliation:
albert.filo@kodak.com, Eastman Kodak Company, Image Sensor Solutions, Rochester, NY, 14650, United States
Get access

Abstract

We have examined environmental radiation sources for digital cameras to find the origins of bright-pixel defects known to accumulate with time. We show that beta and gamma emissions from camera parts and lenses cause image transients, but permanent damage can occur with alpha particles from the CCD cover glass. Our experiments with 14-MeV- and thermal-neutron beams confirm that cosmic rays are the primary cause of new imager bright points.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Janesick, J.R., Scientific Charge-Coupled Devices, (SPIE, Bellingham, WA, 2001) pp.721836.Google Scholar
2. Hori, T., Pulnix Technical Note No. TH-1087, 12/21/2001; www.pulnix.com/Imaging/TechNotes/TH-1087.pdf.Google Scholar
3. Theuwissen, A.J.P., Tech. Dig. IEDM, 811 (2005).Google Scholar
4. Tang, H.H.K. and Rodbell, K.P., MRS Bulletin 28, 111 (2003).Google Scholar
5. Janesick, J.R., op. cit., p 782.Google Scholar
6. Chugg, A.M., Jones, R., Moutrie, M.J., Armstrong, J.R., King, D.B.S., and Moreau, N., IEEE Trans. Nucl. Sci. 50, 2011 (2003).Google Scholar
7. Tivarus, C. and McColgin, W.C., in Semiconductor Defect Engineering—Materials, Synthetic Structures, and Devices II, edited by Ashok, S., Chevallier, J., Kiesel, P., and Ogino, T., (Mater. Res. Soc. Proc. 994, Warrendale, PA, 2007), submitted.Google Scholar
8. Messenger, G.C., IEEE Trans. Nucl. Sci. 39, 468 (1992).Google Scholar
9. Janesick, J.R., op. cit., p 774.Google Scholar
10. Schweinler, H.C., J. Appl. Phys. 30, 1125 (1959).Google Scholar
11. Gordon, M.S., Goldhagen, P., Rodbell, K.P., Zabel, T.H., Tang, H.H.K., Clem, J.M., and Bailey, P., IEEE Trans. Nucl. Sci. 51, 3427 (2004).Google Scholar
12. Dirk, J.D., Nelson, M.E., Ziegler, J.F., Thompson, A., and Zabel, T.H., IEEE Trans. Nucl. Sci. 50, 2060 (2003).Google Scholar
13. Ziegler, J.F., IBM J. Res. Develop. 42, 117 (1998).Google Scholar
14. Ziegler, J.F., IBM J. Res. Develop. 40, 19 (1996).Google Scholar