Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T19:19:02.815Z Has data issue: false hasContentIssue false

Bombardment-Induced Mixing of Mo Films on Si

Published online by Cambridge University Press:  26 February 2011

AH. Van Ommen
Affiliation:
Philips Research Laboratories P.O.B. 80 000. 5600 JA Eindhoven., The Netherlands
M.F.C. Willemsen
Affiliation:
Philips Research Laboratories P.O.B. 80 000. 5600 JA Eindhoven., The Netherlands
PR. Boudewijn
Affiliation:
Philips Research Laboratories P.O.B. 80 000. 5600 JA Eindhoven., The Netherlands
A. H. Reader
Affiliation:
Philips Research Laboratories P.O.B. 80 000. 5600 JA Eindhoven., The Netherlands
Get access

Abstract

We studied ion beam mixing of thin Mo films on monocrystalline Si by As “implantation at room temperature. The results differ significantly from those obtained for implantation at elevated temperature (T > 200°C). where ion beam mixing results in hexagonal MoSi2 formation. Room temperature implantation results in the formation of an amorphous mixed layer. The composition of this layer varies with depth from Mo-rich to Si-rich. The mixed layer thickness increases linearly with implanted dose and energy. An increase of the implantation temperature with 100°C gives rise to a factor of 2 larger mixed layer thickness and to the formation of amorphous MoSi2 near the interface with Si. These phenomena indicate that at elevated temperature ion beam mixing is controlled by radiation-enhanced diffusion whereas, at room temperature ballistic mixing is the dominant mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mayer, J.W. and Lau, S.S., Nato Conference Series 6, (Vol.8), 241 (1983).Google Scholar
2. Appleton, B.R., in “ION IMPLANTATION AND BEAM PROCESSING”, edited by Williams, J.S. and Poate, J.M., (Academic Press, New York, 1984), 189.Google Scholar
3. Tsai, M.Y., Petersson, C.S., d'Heurle, F.M. and Maniscalco, V., Appl. Phys. Lett. 37, 295 (1980).Google Scholar
4. Chiang, S.W., Chow, T.P., Reihl, R.F. and Wang, K.L., J. Appl. Phys, 52, 4027 (1981).Google Scholar
5. Inada, T., Kishi, K., Miyagi, S. and Kahinuma, H., Nucl. Instr. and Meth. 218, 567 (1983).Google Scholar
6. Hung, L.S. and Mayer, J.W., Thin Solid Films 123, 135 (1985).Google Scholar
7. van Ommen, A.H. en Wolters, R.A.M., J. Appl. Phys.(1985).Google Scholar
8. Beale, M.I.J., Deshmukh, V.G.I., Chew, N.G. and Cullis, A.G., Physica 129B, 210 (1985).Google Scholar
9. Okabayashi, H., Morimoto, M. and Nagasawa, E., IEEE Trans. Electron Devices ED–31, 1329 (1984).Google Scholar
10. Sieradzki, M., Nucl. Instr. and Meth. B6, 237 (1985).Google Scholar
11. Fletcher, J., Narayan, J. and Holland, O.W., Inst. Phys. Conf. Ser. 60, 295 (1981).Google Scholar
12. Sigmund, P., Phys. Rev. 184, 383 (1969).Google Scholar