Published online by Cambridge University Press: 15 July 2013
Optical biosensor for monitoring proteolytic activity is constructed by DNA-directed immobilization of enzymes onto porous Silicon nanostructures. This sensor configuration allows both protease recycling and easy surface regeneration for subsequent biosensing analysis by means of mild dehybridization conditions. We demonstrate real-time analysis of minute quantities of proteases paving the way for substrate profiling and the identification of cleavage sites. The biosensor is compatible with common proteomic methods and allows for a successful downstream mass spectrometry analysis of the reaction products.