Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T11:12:18.386Z Has data issue: false hasContentIssue false

Biomimetic Nanostructured Surfaces with Designer Mechanics and Geometry for Broad Applications

Published online by Cambridge University Press:  31 January 2011

Alexander K Epstein
Affiliation:
alexepstein@gmail.com, Harvard University, School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States
Joanna Aizenberg
Affiliation:
jaiz@seas.harvard.edu, Harvard University, School of Engineering and Applied Sciences, Cambridge, Massachusetts, United States
Get access

Abstract

A powerful fabrication platform for a wide range of biomimetic, high-aspect-ratio nanostructured surfaces is introduced. The principles of soft lithography are extended into a double-mold replication process, whereby a master topography is mapped onto an elastomeric inverse mold and replicated in arbitrary multiple material and stiffness gradients, and an array of modified geometries. Control of geometry via deformation of the inverse mold and control of stiffness via prepolymer mixing are discussed. New capabilities enabled by our approach include biomimetic actuation/sensor arrays with programmable biases, precisely tunable mechanical and geometric properties for optical or wetting applications, and flexible curved substrates. Indeed, flexibly anchored ciliary high-aspect-ratio nanostructures are now possible, and a proof-of-principle is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Barthlott, W. Neinhuis, C. Planta, 202, 1 (1997).Google Scholar
2 Ruibal, R. Ernst, V. J. Morphol. 117, 271 (1965).Google Scholar
3 Autumn, K. Hsieh, S. T. Dudek, D. M. Chen, J. Chitaphan, C. Full, R. J. J. Exp. Biol. 209, 260 (2006).Google Scholar
4 Aizenberg, J. Sundar, V. C. Yablon, A. D. Weaver, J. C. Chen, G. Proc. Natl. Acad. Sci. U. S. A. 101, 3358 (2004).Google Scholar
5 Sundar, V. C. Yablon, A. D. Grazul, J. L. Ilan, M. Aizenberg, J. Nature, 424, 899 (2003).Google Scholar
6 McHenry, M. J. Netten, S. M. van, J. Exp. Biol. 210, 4244 (2007).Google Scholar
7 Montgomery, J. Coombs, S. Brain Behav. Evol 40, 209 (1992).Google Scholar
8 Ruppert, E. E. Fox, R. S. Barnes, R. B. Invertebrate Zoology, (Brooks Cole Thomson, Belmont, CA, 2004) p. 175.Google Scholar
9 Huber, G. Mantz, H. Spolenak, R. Mecke, K. Jacobs, K. Gorb, S. N. Arzt, E. Proc. Natl. Acad. Sci..U. S. A. 102, 16293 (2005).Google Scholar
10 Peleshanko, S. Julian, M. D. Ornatska, M. McConney, M. E. LeMieux, M. C. Chen, N. Tucker, C., Yang, Y. Liu, C. Humphrey, J. A. C. Tsukruk, V. V. Adv. Mater. 19, 2903 (2007).Google Scholar
11 Krupenkin, T. N. Taylor, J. A. Schneider, T. M. Yang, S. Langmuir, 20, 3824 (2004).Google Scholar
12 McAuley, S. A. Ashraf, H. Atabo, L. Chambers, A. Hall, S. Hopkins, J. Nicholls, G. J. Phys. D: Appl. Phys. 34, 2769 (2001).Google Scholar
13 Ragab, A. R. Bayoumi, S. E. A. Engineering Solid Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, FL, 1998), p. 944.Google Scholar