Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T10:11:43.903Z Has data issue: false hasContentIssue false

Bilayer Structures Obtained by Pulsed Laser Quenching of Binary Systems

Published online by Cambridge University Press:  26 February 2011

P. Baeri
Affiliation:
Dipartimento di Fisica dell'Università, Corso Italia 57,195129 Catania,ITALY
G. Foti
Affiliation:
Dipartimento di Fisica dell'Università, Corso Italia 57,195129 Catania,ITALY
M. G. Grimaldi
Affiliation:
Dipartimento di Fisica dell'Università, Corso Italia 57,195129 Catania,ITALY
F. Priolo
Affiliation:
Dipartimento di Fisica dell'Università, Corso Italia 57,195129 Catania,ITALY
R. Reitano
Affiliation:
Dipartimento di Fisica dell'Università, Corso Italia 57,195129 Catania,ITALY
A. G. Cullis
Affiliation:
Royal Signals and Radar Establishment,St.Andrews road,WR143PS WORCS,U.K.
N. G. Chew
Affiliation:
Royal Signals and Radar Establishment,St.Andrews road,WR143PS WORCS,U.K.
Get access

Abstract

NiSi and Ni2Si layers on silicon substrates as well as high fluence Si(As) ion implanted layers,have been rapidly melted by 30 ns Nd laser pulse irradiation.The energy density ranged between 0.4 and 1.2 J/cm2. Bilayer structures have been observed when the energy density has been chosen properly.

Buried epitaxial layers together with an amorphous or a policrystalline layer on top,have been detected by RBS and TEM measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peercy, P.S., Thompson, M.O. and Tsao, J.Y., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M.O., Picraux, S.T., andWilliams, J.S. (Mater. Res. Soc. Proc. 74, Pittsburgh, PA (1987) pp. 15 Google Scholar
2. Campisano, S.U., Jacobson, D.C., Poate, J.M., Appl. Phys. Lett. 46 (9), 846, (1985).CrossRefGoogle Scholar
3. Bruines, J.J.P., Hal, R.P.M. van, Kock, B.H., Viegers, M.P.A., Books, H.M.J., Appl. Phys. Lett. 50 (9), 507, (1987).Google Scholar
4. Perepezko, J.H., Follstaedt, D.M., Peercy, P.S., same as ref.1 pp.161Google Scholar
5. Grimaldi, M.G., Priolo, F., Baeri, P., Rimini, E., Cullis, A.G., Chew, N.G., Appl. Phys. Lett. 51 (9), 649, (1987).Google Scholar
6. Priolo, F., Baeri, P., Grimaldi, M.G., Rimini, E., in Hetoroepitaxy in Silicon II, edited by Fan, J.C.C.,Phillips, J.M. and Tsaur, B.Y. (Mater.Res. Soc.Proc. 91, Pittsburgh,PA 1987) p. 491 Google Scholar
7. Liehr, M., J. Vacuum Sci. Technol. A4, (3), 855, (1896).Google Scholar
8. Galvin, G.J., Mayer, J.W., Peercy, P.S., Appl. Phys. Lett. 46 (7), 644, (1985).Google Scholar
9. Thompson, M.O., Mayer, J.W., Cullis, A.G., Webber, H.C., Chew, N.G ., Poate, J.M., Phys. Rev. Lett. 50, 948, (1983).Google Scholar
10. Cullis, A.G., Webber, H.C., Chew, N.G., Poate, J.M., Baeri, P., Phys. Rev. Lett. 49, 219, (1982).Google Scholar
11. Peercy, P.S., Thompson, M.O., Tsao, J.Y., Appl. Phys. Lett. 47 (3), 244, (1985).Google Scholar