Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T05:28:16.776Z Has data issue: false hasContentIssue false

Atomistic Study of Strain Profiles in Semiconductor Quantum Dot Structures

Published online by Cambridge University Press:  17 March 2011

K. Shintani
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan, shintani@mce.uec.ac.jp
H. Sugii
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Y. Kikuchi
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
M. Kobayashi
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Get access

Abstract

The minimum energy atomic configurations of stacked GaAs/InAs/GaAs quantum dot structures are calculated by using the conjugate gradient energy minimization with the Stillinger-Weber potentials. The islands are assumed to be either of pyramidal shape or of trapezoidal shape. The numerical results for the five-layer stacked structures show that the normal strains exhibit stepwise up-and-down profiles through the vertical centerlines of the islands and intermediate layers. Next, the molecular dynamics method with the Tersoff potential is applied to single Ge/Si and Si/Ge/Si structures with pyramidal islands in order to investigate the effect of temperature. It is found that there is a considerable difference between the normal strain in the direction perpendicular to the island base obtained by the conjugate gradient minimization with the Stillinger-Weber potential and that obtained by the molecular dynamics method at 800 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Metzger, T. H., Kegel, I., Paniago, R., Lorke, A., Peisl, J., Schulze, J., Eisele, I., Schittenhelm, P., and Abstreiter, G., Thin Solid Films 336, 1 (1998).Google Scholar
2. Miller, P. D., Liu, C.-P., Henstrom, W. L., Gibson, J. M., Huang, Y., Zhang, P., Kamins, T. I., Basile, D. P., and Williams, R. S., Appl. Phys. Lett. 75, 46 (1999).Google Scholar
3. Jin-Phillipp, N. Y. and Phillipp, F., J. Appl. Phys. 88, 710 (2000).Google Scholar
4. Zhang, K., Heyn, Ch., Hansen, W., Schmidt, Th., and Falta, J., Appl. Phys. Lett. 77, 1295 (2000).Google Scholar
5. Andreev, A. D., Downes, J. R., Faux, D. A., and O'Reilly, E. P., J. Appl. Phys. 86, 297 (1999).Google Scholar
6. Pearson, G. S. and Faux, D. A., J. Appl. Phys. 88, 730 (2000).Google Scholar
7. Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 11969 (1995).Google Scholar
8. Benabbas, T., Françis, P., Androussi, Y., and Lefebvre, A., J. Appl. Phys. 80, 2763 (1996).Google Scholar
9. Benabbas, T., Androussi, Y., and Lefebvre, A., J. Appl. Phys. 86, 1945 (1999).Google Scholar
10. Tillmann, K., Jäger, W., Rahmati, B., Trinkaus, H., Vescan, L., and Urban, K., Philos. Mag. A 80, 255 (2000).Google Scholar
11. Cusack, M. A., Briddon, P. R., and Jaros, M., Phys. Rev. B 54, R2300 (1996).Google Scholar
12. Cusack, M. A., Briddon, P. R., and Jaros, M., Phys. Rev. B 56, 4047 (1997).Google Scholar
13. Jiang, H. and Singh, J., Phys. Rev. B 56, 4696 (1997).Google Scholar
14. Pryor, C., Kim, J., Wang, L. W., Williamson, A. J., and Zunger, A., J. Appl. Phys. 83, 2548 (1998).Google Scholar
15. Saito, T., Schulman, J. N., and Arakawa, Y., Phys. Rev. B 57, 13016 (1998).Google Scholar
16. Jiang, H. and Singh, J., Physica E 2, 614 (1998).Google Scholar
17. Groenen, J., Priester, C., and Carles, R., Phys. Rev. B 60, 16013 (1999).Google Scholar
18. Kikuchi, Y., Sugii, H., and Shintani, K., J. Appl. Phys. 89, 1191 (2001).Google Scholar
19. Daruka, I., Barabási, A.-L., Zhou, S. J., Germann, T. C., Lomdahl, P. S., and Bishop, A. R., Phys. Rev. B 60, R2150 (1999).Google Scholar
20. Scheerschmidt, K., Conrad, D., Kirmse, H., Schneider, R., and Neumann, W., Ultramicroscopy 81, 289 (2000).Google Scholar
21. Androussi, Y., François, P., Lefebvre, A., Priester, C., Lefebvre, I., Allan, G., Lannoo, M., Moison, J. M., Lebouche, N., and Barthe, F., in Evolution of Thin-Film and Surface Structure and Morphology, edited by Demczyk, B. G., Williams, E. D., Garfunkel, E., Clemens, B. M., and Cuomo, J. J. (Mater. Res. Soc. Proc. 355, Pittsburgh, PA, 1995) pp. 569574.Google Scholar
22. Ledentsov, N. N., Shchukin, V. A., Grundmann, M., Kirstaedter, N., Böhrer, J., Schmidt, O., Bimberg, D., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kop'ev, P. S., Zaitsev, S. V., Gordeev, N. Yu., Alferov, Zh. I., Borovkov, A. I., Kosogov, A. O., Ruvimov, S. S., Werner, P., Gösele, U., and Heydenreich, J., Phys. Rev. B 54, 8743 (1996).Google Scholar
23. Leonard, D., Pond, K., and Petroff, P. M., Phys. Rev. B 50, 11687 (1994).Google Scholar
24. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
25. Ichimura, M., Phys. Stat. Solidi (a) 153, 431 (1996).Google Scholar
26. Sakamoto, K., Matsuhata, H., Tanner, M. O., Wang, D. and Wang, K. L., Thin Solid Films 321, 55 (1998).Google Scholar
27. Tersoff, J., Phys. Rev. B 39, 5566 (1989).Google Scholar