Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T13:33:44.462Z Has data issue: false hasContentIssue false

Atomistic Model of Transient Enhanced Diffusion and Clustering of Boron In Silicon

Published online by Cambridge University Press:  15 February 2011

L. Pelaz
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
G. H. Gilmer
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
M. Jaraiz
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
H.-J. Gossmann
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
C. S. Rafferty
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
D. J. Eaglesham
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
J. M. Poate
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974
Get access

Abstract

An atomistic model for B implantation, diffusion and clustering is presented. The model embodies the usual mechanism of Si self-interstitial diffusion and B kick-out and also includes the formation of immobile precursors of B clusters prior to the onset of transient enhanced diffusion. These immobile complexes, such as BI2 (a B atom with two Si self-interstitials) form during implantation or in the very early stages of annealing, when the Si interstitial concentration is very high. They then act as nucleation centers for the formation of B-rich clusters during annealing. This model explains and predicts the behavior of B under a wide variety of implantation and annealing conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.- Michel, A.E., Rausch, W., Ronseim, P.A. and Kastl, R.H., Appl. Phys. Lett. 50, 416 (1987).Google Scholar
2.- Griffin, P.B., Levet, R.F., Packan, P.A., and Plummer, J.D., Appl. Phys. Lett. 64, 1242 (1994).Google Scholar
3.- Cowem, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Vandenhoudt, D.W.E., Appl. Phys. Lett. 65, 2981 (1994).Google Scholar
4.- Fahey, P.M., Griffin, P.B. and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
5.- Stolk, P.A., Gossmann, H.J., Eaglesham, D.J., Jacobson, D.C., and Poate, J.M., Appl. Phys. Lett. 66, 568 (1995).Google Scholar
6.- Jaraiz, M., Gilmer, G.H., de la Rubia, T.D. and Poate, J.M., Appl. Phys. Lett. 68, 409 (1996).Google Scholar
7.- Robinson, M.T. and Torrens, L.M., Phys. Rev. B 9, 5008 (1974).Google Scholar
8.- Pelaz, L., Jaraiz, M., Gilmer, G.H., Gossmann, H.-J., Rafferty, C.S., Eaglesham, D.J. and Poate, J.M., Appl. Phys. Lett. 70, 2285 (1997).Google Scholar
9.- Zhu, J., Diaz de la Rubia, T, Yang, L.H., Maihiot, C. and Gilmer, G.H., Phys. Rev. B 54, 4741, (1996).Google Scholar
10.- Haynes, T.E., Ealgesham, D.J., Stoik, P.A., Gossmann, H.-J., Jacobson, D.C. and Poate, J.M., Appl. Phys. Lett. 69, 2981 (1994).Google Scholar
11.- Giles, M.D., J. Electr. Soc. 138, 1160 (1991).Google Scholar
12.- Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J. and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar