Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T14:04:43.208Z Has data issue: false hasContentIssue false

Atomistic Aspects of Silicide Reactions Studied with STM

Published online by Cambridge University Press:  03 September 2012

P. A. Bennett
Affiliation:
Box 871504, Physics Dept., ASU, Tempe, AZ 85287–1504
S. A. Parikh
Affiliation:
Box 871504, Physics Dept., ASU, Tempe, AZ 85287–1504
M. Y. Lee
Affiliation:
Box 871504, Physics Dept., ASU, Tempe, AZ 85287–1504
David G. Cahill
Affiliation:
Dept. of Mat. Sci. and Eng., U. of Illinois, Urbana, IL 61801
M. Copel
Affiliation:
T. J. Watson Res. Cntr., P. 0. Box 218, Yorktown Hts, NY 10598
R. M. Tromp
Affiliation:
T. J. Watson Res. Cntr., P. 0. Box 218, Yorktown Hts, NY 10598
Get access

Abstract

We discuss atomistic aspects of the silicide contact reaction inferred primarily from STM observations of the prototype system Co/Si(1 11). For room temperature deposition and low coverage (0.01M1) we find that metal atoms exist as near-surface interstitials within the 7×7 reconstruction. Bond breaking associated with silicide formation occurs only at higher coverages. Deposition at 320C results in flat-topped triangular islands of epitaxial CoSi2 with a metastable 7-fold (111) interface, stabilized by the lateral silicon-silicide interface along the island edges. Some islands are covered with a 2×2 array of silicon adatoms. Very high temperature annealing (1200C) results in an “impurity stabilized 1×1” surface which is in fact a lattice gas of ring-clusters that appear like tiny donuts or bagels in empty states STM images. These structures phase-separate from the clean 7×7 structure upon cooling below 850C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ottaviani, G., Thin Solid Films 140, 3 (1986).Google Scholar
2. Nicolet, M. A. and Lau, S. S., in VLSI Microstructure Science, Einspruch, N. G., Larrabee, G. B., Eds. (Acad. Press, 1983), pp. 330.Google Scholar
3. Tu, K. N. and Mayer, J. W., in Thin Films - Interdiffusion and Reactions, Poate, J. M., Tu, K. N., Mayer, J. W., Eds. (John Wiley, 1978), pp. 359.Google Scholar
4. vonKanel, H., Mat. Sci. Rep. 8, 193 (1992).Google Scholar
5. VanderVeen, J. F., Fischer, A. E. M. J. and Vrijmoeth, J., App. Surf. Sci. 38, 13 (1989).Google Scholar
6. Bennett, P. A., Devries, B., Robinson, I. K. and Eng, P. J., Phys. Rev. Lett. 69, 2539 (1992).Google Scholar
7. Bennett, P. A., Copel, M., Cahill, D., Falta, J. and Tromp, R. M., Phys. Rev. Lett. 69, 1224 (1992).Google Scholar
8. Butler, J. R. and Bennett, P. A., Mater. Res. Soc. Symp. Proc. 152, 159 (1990).Google Scholar
9. Bennett, P. A., Butler, J. R. and Tong, X., Mater. Res. Soc. Symp. Proc. 148, 61 (1989).Google Scholar
10. Bennett, P. A., Butler, J. R. and Tong, X., J. Vac. Sci. Technol. A 7, 2174 (1989).Google Scholar
11. Tung, R. T., Gibson, J. M. and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).Google Scholar
12. Tung, R. T., Phys. Rev. Lett. 52, 461 (1984).Google Scholar
13. d'Anterroches, C., Yakupoglu, H. N., Lin, T. L., Fathauer, R. W. and Grunthaner, P. J., Appl. Phys. Lett. 52, 434 (1988).Google Scholar
14. Fathauer, R. W., Ksendzov, A., Iannelli, J. M. and George, T., Phys. Rev. B44, 1345 (1991).Google Scholar
15. Demuth, J. E., Hamers, R. J., Tromp, R. M. and Welland, M. E., Jour. Vac. Sci. Technol. A 4, 1320 (1986).Google Scholar
16. vanLoenen, E. J., vanderVeen, J. F. and LeGoues, F. K., Surf. Sci. 157, 1 (1985).Google Scholar
17. Chang, Y. J. and Erskine, J. L., Phys. Rev. B 28, 5766 (1983).Google Scholar
18. Bennett, P. A., Parikh, S. A. and Cahill, D. G., Jour. Vac. Sci. Technol. A, 1680 (1993).Google Scholar
19. Tromp, R. M., Hamers, R. J. and Demuth, J. E., Phys. Rev. B34, 1388 (1986).Google Scholar
20. Hamann, D. R. and Mattheiss, L. F., Phys. Rev. Lett. 54, 2517 (1985).Google Scholar
21. Bennett, P. A., Cahil, D. G., Copel, M. and Tromp, R. M., (to be published) (1993).Google Scholar
22. Weber, E., Appl. Phys. A30, 1 (1983).Google Scholar
23. Kohler, U. K., Demuth, J. E. and Hamers, R. J., Phys. Rev. Lett. 60, 2499 (1988).Google Scholar
24. Tosch, S. and Neddermeyer, H., Phys. Rev. Lett. 61, 349 (1988).Google Scholar
25. Hiraki, A., Surf. Sci. Rep. 3, 357 (1983).Google Scholar
26. Nemanich, R. J., Doland, C. M. and Ponce, F. A., Proc. MRS 94, 139 (1987).Google Scholar
27. Bennett, P. A., Parikh, S. A., Lee, M. Y. and Cahill, D. G., (to be published) (1993).Google Scholar
28. Robinson, I. K., Waskiewicz, W. K., Fuoss, P. H., Stark, J. B. and Bennett, P. A., Phys. Rev. B 33, 7013 (1986).Google Scholar
29. Bennett, P. A., Feldman, L. C., Kuk, Y., McRae, E. G. and Rowe, J. E., Phys. Rev. B 28, 3656 (1983).Google Scholar
30. Hamann, D. R., Phys. Rev. Lett. 601, 313 (1988).Google Scholar
31. Santaniello, A., DePadovea, P., Jin, X., Chandesris, D. and Rossi, G., Jour. Vac. Sci. Technol. B 7, 1017 (1989).Google Scholar
32. Catana, A., Schmid, P. E., Rieubland, S., Levy, F. and Stadelmann, P., J. Phys. Cond. Mat. 1, 3999 (1989).Google Scholar
33. Hellman, F. and Tung, R. T., Phys. Rev. B 31, 10786 (1988).Google Scholar
34. Private communication from numerous experimenters who prefer to remain anonymous.Google Scholar
35. Telieps, W. and Bauer, E., Surf. Sci. 162, 163 (1985).Google Scholar
36. Osakabe, N., Tanishiro, Y., Yagi, K. and Honjo, G., Surf. Sci. 109, 353 (1981).Google Scholar