Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T13:49:14.140Z Has data issue: false hasContentIssue false

Atomic-Scale Physics and Modeling of Schottky Barrier Effect in Carbon Nanotube Nanoelectronics

Published online by Cambridge University Press:  01 February 2011

Yongqiang Xue*
Affiliation:
College of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, New York 12203
Get access

Abstract

We present an atomistic self-consistent study of the electronic and transport properties of semiconducting carbon nanotubes in contact with metal electrodes at different contact geometries. We analyze the Schottky barrier effect at the metal-nanotube interface by examining the electrostatics, the band line up and the conductance of the metal-nanotube wire-metal junction as a function of the nanotube channel length, which leads to an effective decoupling of interface and bulk effects in electron transport through nanotube junction devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. “Silicon Nanoelectronics and Beyond: Challenges and Research Directions”, Draft, Version 1.1, Semiconductor Research Corporation, Research Triangle Park, NC, September, 2004.Google Scholar
2. Dekker, C., Phys. Today 52 (5), 22 (1999).Google Scholar
3. Avouris, Ph., Appenzeller, J., Martel, R. and Wind, S.J., Proc. IEEE 91, 1772 (2003).Google Scholar
4. Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H., Nature 424, 654 (2003);Google Scholar
Tersoff, J., Nature 424, 622 (2003).Google Scholar
5. Xue, Y. and Datta, S., Phys. Rev. Lett. 83, 4844 (1999);Google Scholar
Leonard, F. and Tersoff, J., Phys. Rev. Lett. 84, 4693 (2000);Google Scholar
Odintsov, A.A., Phys. Rev. Lett. 85, 150 (2000);Google Scholar
Nakanishi, T., Bachtold, A., and Dekker, C., Phys. Rev. B 66, 073307 (2002).Google Scholar
6. Xue, Y. and Ratner, M.A., Appl. Phys. Lett. 83, 2429 (2003); Phys. Rev. B 69, 161402 (2004); Phys. Rev. B 70, 205416 (2004); Nanotechnology 16, 5 (2005).Google Scholar
7. Yao, Z., Kane, C.L., and Dekker, C., Phys. Rev. Lett. 84, 2941 (2000);Google Scholar
Park, J.-Y., Rosenblatt, S., Yaish, Y., Sazonova, V., Ustunel, H., Braig, S., Arias, T.A., Brouwer, P., and McEuen, P.L., Nano Lett. 4, 517 (2004).Google Scholar
8. Xue, Y., Datta, S., and Ratner, M.A., Chem. Phys. 281, 151 (2002).Google Scholar
9. Hoffmann, R., Rev. Mod. Phys. 60, 601 (1988);Google Scholar
Rochefort, A., Salahub, D.R., and Avouris, Ph., J. Phys. Chem. B 103, 641 (1999).Google Scholar