Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-18T10:08:37.309Z Has data issue: false hasContentIssue false

Atomic Force Probe of Mesoscopic Dielectric and Viscoelastic Fluctuations Near the Glass Transition

Published online by Cambridge University Press:  10 February 2011

L. E. Walther
Affiliation:
Department of Physics, Northeastern University, Boston, MA 02115 and Physikalisches Institut, Universität Würzburg, 97074 Würzburg, Germany
N. E. Israeloff
Affiliation:
Department of Physics, Northeastern University, Boston, MA 02115
Get access

Abstract

We report a new experimental approach to study the glass transition and glassy dynamics on a mesoscopic scale. Non contact atomic force microscopy is employed to measure dielectric fluctuations of glass forming polymers such as PVAc. Force modulation techniques, performed with the same instrument, allow us to study viscoelastic properties. A custom-built variable temperature UHV AFM with exceptional thermal stability utilizing piezoresistive cantilevers was used. First results on PVAc include large fluctuations of the viscoelastic properties as a function of applied stress below the glass transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See review by Angell, C. A., Science 267, 1924 (1995) and following articles in the same issue.Google Scholar
2. Ernst, Richard M., Nagel, Sidney R. and Grest, Gary S., Phys. Rev. B 43, 8070 (1991).Google Scholar
3. Menon, Narayanan and Nagel, Sydney R., Phys. Rev. Lett. 74, 1230 (1995).Google Scholar
4. Mel'cuk, Andrew I., Ramos, Raphael A., Gould, Harvey, Klein, W., and Mountain, Raymond D., Phys. Rev. Lett. 75, 2522 (1995).Google Scholar
5. Israeloff, N. E., Phys. Rev. B53 (Rapid Comm.), Rl1913 (1996).Google Scholar
6. Schuller, J., Mel'nichenko, Yu.B., Richert, R. and Fischer, E.W., Phys. Rev. Lett. 73, 2224 (1994).Google Scholar
7. Fisher, D. S. and Huse, D. A., Phys. Rev. Lett. 56, 2401 (1986).Google Scholar
8. Rails, K.S. and Buhrman, R. A., Phys. Rev. Lett. 60, 2434 (1988);Google Scholar
Garfunkel, G. A., Alers, G. B., Weissman, M. B., and Israeloff, N. E., Phys. Rev. B40 (RC), 8049 (1989).Google Scholar
9. Israeloff, N. E., Weissman, M. B., Nieuwenhuys, G. J., and Kosiorowska, J., Phys. Rev. Lett. 63, 794 (1989);Google Scholar
Israeloff, N. E., Alers, G. B., and Weissman, M. B., Phys. Rev. B 44 (Rapid Comm.), 12613(1991).Google Scholar
10. Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988).Google Scholar
11. Binnig, G., Quate, C. and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
12. Martin, Y., Abraham, D.W. and Wickramasinghe, H.K., Appl. Phys. Lett. 52, 1103 (1988).Google Scholar
13. Radmacher, M., Tillmann, R. W., and Gaub, H. E., Biophys. J. 64, 735 (1993).Google Scholar
14. Tortonese, M., Ph.D. Thesis, Stanford University, 1993.Google Scholar
15. Mckinney, J. E., Belcher, H. V., J. Res. Nat. Bur. Stds. 67A, 43 (1963).Google Scholar