Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T08:46:48.468Z Has data issue: false hasContentIssue false

Atomic Defects in Intermetallic Compounds and Diffusion Processes

Published online by Cambridge University Press:  10 February 2011

H.-E. Schaefer
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57, D-70569 Stuttgart, Germany, e-mail:schaefer@itap.physik.uni-stuttgart.de
K. Frenner
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
R. Würschum
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
Get access

Abstract

For the understanding of the properties of the technically important intermetallic compounds as transition metal aluminides and silicides the understanding of atomic defect properties is pivotal. From recent positron lifetime studies high or low values for the effective vacancy formation enthalpy were found for close-packed or for more open-structured bcc type compounds, respectively, which can be well understood theoretically. In B2-FeAl the vacancy migration enthalpy could be additionally derived at high temperatures from vacancy equilibration processes. It is shown here by a study on B2-FeAl in comparison to the positron annihilation experiments that the thermal formation and migration of defects can be specifically investigated by time-dependent length-change experiments at high temperatures by the defect equilibration behavior after temperature changes. With the present data on vacancy formation and migration the wide variation of the transition-metal self-diffusivities in intermetallic compounds can be understood.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Westbrook, J.H., in Structural Intermetallics, ed. Dariola, R. et al., TMS, Warrendale, 1990, p. 1 Google Scholar
[2] Westbrook, J.H. and Fleischer, R.L., eds., Intermetallic Compounds -Principles and Practice, Vol. 1 + 2 (John Wiley, Chichester, 1994)Google Scholar
[3] Dimitrov, O., in [2], Vol 1, p. 771 Google Scholar
[4] Mehrer, H., Proceedings of the MRS Spring Meeting, Symposium Z, San Francisco, USA, to be publishedGoogle Scholar
[5] Sauthoff, G., in Diffusion in Ordered Alloys, Eds. Fultz, B., Cahn, R.W., and Gupta, D. (TMS, Warrendale, 1993), p. 205 Google Scholar
[6] Wasilewski, R.J., J. Phys. Chem. Sol 29 39 (1968)Google Scholar
[7] Schaefer, H.-E. and Badura-Gergen, K., Defect and Diff. Forum 143–147 285 (1997)Google Scholar
[8] Schaefer, H.-E., Wiirschum, R., Šob, M., Žak, T., Yu, W.Z., Eckert, W., and Banhart, F., Phys. Rev. B41 11869 (1990)Google Scholar
[9] Brossmann, U., Würschum, R., Badura, K. and Schaefer, H.-E., Phys. Rev. B49 6457 (1994)Google Scholar
[10] Kümmerle, E., Badura, K., Sepiol, B., Mehrer, H. and Schaefer, H.-E., Phys. Rev. B52, R6847 (1995)Google Scholar
[11] Würschum, R., Kümmerle, E.A., K. Badura-Gergen, Seeger, A., Herzig, Chr. and Schaefer, H.-E., J. Appl. Phys. 80 724 (1996)Google Scholar
[12] Badura-Gergen, K. and Schaefer, H.-E., Phys. Rev. B56 3032 (1997)Google Scholar
[13] Wolff, J., Broska, A., Franz, M. and Hehenkamp, Th., Mat. Sci. Forum 255–257 (1997)Google Scholar
[14] Fähnle, M., Mayer, J. and Meyer, B., to be published; J. Mayer and M. Fiihnle, Acta Materialia 45 2207 (1997)Google Scholar
[15] Novion, Ch. de in [2], Vol. 1, p. 559 Google Scholar
[16] Würschum, R., Grupp, Ch. and Schaefer, H.-E., Phys. Rev. Letters 75 97 (1995)Google Scholar
[17] Wolff, J., Broska, A., Brauer, M., Franz, M., Kohler, B. and Hehenkamp, Th., Verhandl. DPG (VI), 33, M7.8 (1998), p. 817 Google Scholar
[18] Fu, C.L. and Painter, G.S., Acta Mater. 45 481 (1997)Google Scholar
[19] Frenner, K., diploma thesis, Stuttgart University (1998)Google Scholar
[20] Mayer, J. and Fahnle, M., Defect and Diffusion Forum, 143–147 285 (1997)Google Scholar
[21] Fu, C.L., Ye, Y.Y., Yoo, M.H. and Ho, K.M., Phys. Rev. B48 6712 (1993)Google Scholar
[22] Mishin, Yu. and Farkas, D., Defect and Diffusion Forum 143–147 (1997)Google Scholar
[23] Hirscher, M., Schaible, D., Weller, M., Schweizer, E. and Kronmiiller, H., Verhandl. DPG (VI) 33, M 7.11 (1998), p. 817 Google Scholar
[24] Simmons, R.O. and Balluffi, R.W., Phys. Rev. 117 1 (1960)Google Scholar
[25] Kim, S.M., Takeda, Y. and Kogachi, M., Scripta Materialia 34 1845 (1996)Google Scholar
[26] Ommen, A.H. van and Miranda, J. de, Phil. Mag. A43 387 (1981)Google Scholar
[27] Heigl, F. and Sizmann, R., Crystal lattice defects 3 13 (1972)Google Scholar
[28] Fähnle, M. and Mayer, B., Scripta Materialia 38 1131 (1998)Google Scholar
[29] Kraftmakher, Y., Defect and Diffusion Forum 143–147 37 (1997)Google Scholar
[30] Würschum, R. and Schaefer, H.-E., Mat. Sci. Forum 255–257 81 (1997)Google Scholar
[31] Badura, K. and Schaefer, H.-E., Z. Metallkunde 84 405 (1993)Google Scholar
[32] Badura-Gergen, K., Dr. rer. nat. thesis, Stuttgart University (1995)Google Scholar
[33] Vogl, G. and Sepiol, B., Acta Metall. Mater. 42 3175 (1994)Google Scholar
[34] Mehrer, H., Mat. Trans. JIM 37 1259 (1996)Google Scholar
[35] Sepiol, B. and Vogl, G., Phys. Rev. Lett. 71 731 (1993)Google Scholar
[36] Schaefer, H.-E., Damson, B., Weller, M., Arzt, E., and George, E.P., phys. stat. sol. (a), 160 531 (1997)Google Scholar
[37] Shirai, Y., Seeger, A. and Schaefer, H.-E., in Positron Annihilation, eds. Dorkens-Vanpraet, L. et al., World Scientific, Singapore, 419 (1989)Google Scholar
[38] Ho, K. and Dodd, R.A., Scripta Metall. 12 1055 (1978)Google Scholar