Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T16:02:37.021Z Has data issue: false hasContentIssue false

Atmospheric Pressure Chemical Vapor Deposition of 3C-SiC

Published online by Cambridge University Press:  10 February 2011

Michael W. Russell
Affiliation:
NRC Postdoctoral Research Associate Naval Research Laboratory, Washington, DC 20375
Jaime A. Freitas Jr.
Affiliation:
Sachs/Freeman Associates, Landover, MD 20785
Alan D. Berry
Affiliation:
Naval Research Laboratory, Washington, DC 20375
James E. Butler
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Optically transparent SiC deposits were grown via atmospheric pressure chemical vapor deposition (APCVD) on graphite substrates from methyltrichlorosilane (MTS) in hydrogen in a cold-walled, RF-induction furnace. Structural morphology was examined by scanning electron microscopy and correlated to substrate temperature, MTS/H2 ratio, and hydrogen flow. Photoluminescence revealed that high quality cubic material was grown. The PL spectra exhibited a zero phonon line (2.3787 eV) attributable to an exiton bound to a neutral nitrogen donor, in addition to TA, LA, TO, and LO phonon replicas. Observed broadening and splitting of the PL spectral lines was associated with the morphological habit and internal strain of individual crystallites. In addition, the PL spectra for samples grown at higher MTS/H2 ratios and low H2 flows exhibited weak shoulders on the low energy side of the five-line spectra which might be associated with nonstoichiometric defects such as Si interstitials or C vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirai, T. and Sasaki, M. in Silicon Carbide Ceramics-I, eds. Somiya, Shigeyuki and Inomata, Yoshizo, Elsevier Applied Science, 8795 (1991).Google Scholar
2. Gorin, S. N. and Ivanova, L. M. [private communication].Google Scholar
3. Post, Howard W., Silicones and Organic Silicon Compounds, Reinhold Publishing, New York, 57 (1949).Google Scholar
4. Feldman, D. W., Parker, J. H. Jr., Choyke, W. J., and Patrick, L., Phys. Rev. 173, 787 (1968).Google Scholar
5. Cheng, D. J., Shyy, W. J., Kuo, D. H., and Hon, M. H., J. Electrochem. Soc., 134 (12), 3145 (1987).Google Scholar
6. Pampuch, P. and Stobierski, L., Ceramurgia Int. 3 (2), 43 (1977).Google Scholar
7. Chu, C. H. and Hon, M.H., J. Cer. Soc. Jpn., 101 (1), 95 (1993).Google Scholar
8. Gorin, S. N. [private communication].Google Scholar
9. Wagner, R. S., Acta Metall., 8, 57 (1960).Google Scholar
10. Hamilton, D. R. and Seidensticker, R. G., J. Appl. Phys., 31, 1165 (1960).Google Scholar
11. Chu, C. H., Lu, Y. M. and Hon, M. H., J. Mater. Sci., 27, 3883 (1992).Google Scholar
12. Papasouliotis, G. D. and Sotirchos, S. V., J. Electrochem. Soc., 141 (6) 1599 (1994).Google Scholar
13. Choyke, W. J., Mat. Res. Bull., 4, S141 (1969).Google Scholar
14. Choyke, W. J., Hamilton, D. R. and Patrick, L., Phys. Rev. 133 A1163 (1964).Google Scholar
15. Hartman, R. L. and Dean, P. J., Phys. Rev. B, 2, 951 (1970).Google Scholar
16. Choyke, W. J., Feng, Z. C., and Powell, J. A., J. Appl. Phys., 64, 3163 (1988).Google Scholar
17. Freitas, J. A. Jr., Bishop, S. G., Addamiano, A., Klein, P. H., Kim, H. J., and Davis, R. F., Mater. Res. Soc. Proc., 46, 581 (1985).Google Scholar
18. Freitas, J. A. Jr., Bishop, S. G., Nordquist, P. E. R. Jr., and Gipe, M. L., Appl. Phys. Lett., 52 (20) 1695 (1988).Google Scholar