Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T10:12:29.579Z Has data issue: false hasContentIssue false

Assessment of Thin Heteroepitaxial Layers Using Skew Angle Asymmetrical X-Ray Double Crystal Diffraction

Published online by Cambridge University Press:  28 February 2011

S. J. Miles
Affiliation:
British Telecom Research Laboratories, Martlesham Heath, Ipswich, IP5 7RE, U.K
G. S. Green
Affiliation:
British Telecom Research Laboratories, Martlesham Heath, Ipswich, IP5 7RE, U.K
B. K. Tanner
Affiliation:
British Telecom Research Laboratories, Martlesham Heath, Ipswich, IP5 7RE, U.K
M. A. G. Halliwell
Affiliation:
British Telecom Research Laboratories, Martlesham Heath, Ipswich, IP5 7RE, U.K
M. H. Lyons
Affiliation:
British Telecom Research Laboratories, Martlesham Heath, Ipswich, IP5 7RE, U.K
Get access

Abstract

Asymmetric reflections in which the beam paths are skew with respect to the sample surface have been used to characterize thin heteroepitaxial layers by double axis X-ray diffractometry. By utilizing reflections with Braqg cones which are partially embedded in the sample surface it is possible to tune to grazing the angles of incidence or emergence. Enhanced layer to substrate peak intensity ratio and narrower layer peak widths can be obtained. The technique is demonstrated using skew angle reflections 333, 133 and 044 from a 400Å GaInAsP layer on an InP substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fewster, P.F. and Curling, C.J., J. Appl. Phys. 62 4154 (1987)Google Scholar
2. Halliwell, M.A.G., Lyons, M.H. and Hill, M.J., J Crystal Growth 68 523 (1984)Google Scholar
3. Hill, M.J., Tanner, B.K., Halliwell, M.A.G. and Lyons, M.H., J. Appl. Cryst. 18 446 (1985)Google Scholar
4. Bartels, W.J. and , Nijman, J. Cryst. Growth 44 518 (1978)Google Scholar
5. Macrander, A.T., Minami, E.R. and Berreman, D.W., J. Appl. Phys 60 1364 (1986)Google Scholar
6. Tanner, B.K. and Hill, M.J., J. Phys. D (Appl.Phys) 19 L229 (1986)Google Scholar
7. Lucas, C.A., Hatton, P.D., Bates, S., Ryan, T.W., Miles, S. and Tanner, B.K., J. Appl. Phys. 63 1936 (1988)Google Scholar
8. Bates, S., Hatton, P.D., Lucas, C.A., Ryan, T.W., Miles, S.J. and Tanner, B.K., Adv. X-ray Anal. 31 155 (1988)Google Scholar
9. Cowley, R.A. and Ryan, T.W., J. Phys. D (Appl. Phys.) 20 61 (1987)Google Scholar
10. Lyons, M.H. and Halliwell, M.A.G., Inst. Phys. Conf. Ser. 76 10 (1985)Google Scholar