Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T00:35:27.746Z Has data issue: false hasContentIssue false

Arsenic Incorporation Behavior in Nitrogen-rich GaNAs Alloys Synthesized by Metalorganic Chemical Vapor Deposition (MOCVD)

Published online by Cambridge University Press:  01 February 2011

M. Gherasimova
Affiliation:
Department of Electrical Engineering, Yale University, P.O.Box 208284, New Haven, CT 06520
R. G. Wheeler
Affiliation:
Department of Electrical Engineering, Yale University, P.O.Box 208284, New Haven, CT 06520
L. J. Guido
Affiliation:
Department of Materials Science and Engineering, Virginia Tech, 213 Holden Hall, Blacksburg, VA 24061
K. L. Chang
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, 1406 West Green St., Urbana, IL 61801
K. C. Hsieh
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, 1406 West Green St., Urbana, IL 61801
Get access

Abstract

Homogeneous GaNAs alloy films containing 3 to 4 percent of arsenic anion fraction were synthesized by metalorganic chemical vapor deposition (MOCVD). Post-growth annealing resulted in the formation of GaAs precipitates of several nanometers in size embedded in the nitrogen-rich GaN(As) matrix, while as-grown ternary films exhibited no evidence of phase segregation. Band gap reduction due to alloying was observed by the optical transmission measurements, leading to an estimate for the bowing parameter of 25 eV in the films with the arsenic content of 3.5 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sakai, S., Ueta, Y. and Terauchi, Y., Jpn. J. Appl. Phys. 32, 4413 (1993).Google Scholar
2. Rubio, A. and Cohen, M. L., Phys. Rev. B 51, 4343 (1995).Google Scholar
3. Neugebauer, J. and Van de Walle, C. G., Phys. Rev. B 51, 10568 (1995).Google Scholar
4. Bellaiche, L., Wei, S.-H. and Zunger, A., Phys. Rev. B 54, 17568 (1996).Google Scholar
5. Ho, I. H. and Stringfellow, G. B., MRS Symp. Proc. 449, 871 (1997).Google Scholar
6. Buyanova, I. A., Chen, W. M. and Monemar, B., MRS Internet J. Nitride Semicond. Res. 6, 2 (2001).Google Scholar
7. Pankove, J. I. and Hutchby, J. A., J. Appl. Phys. 47, 5387 (1976).Google Scholar
8. Winser, A. J., Novikov, S. V., Davis, C. S., Cheng, T. S., Foxon, C. T. and Harrison, I., Appl. Phys. Lett. 77, 2506 (2000).Google Scholar
9. Li, X., Kim, S., Reuter, E. E., Bishop, S. G. and Coleman, J. J., Appl. Phys. Lett. 72, 1990 (1998).Google Scholar
10. Guido, L. J., Mitev, P., Gherasimova, M. and Gaffey, B., Appl. Phys. Lett. 72, 2005 (1998).Google Scholar
11. Huang, H. Y., Lin, W. C., Lee, W. H., Shu, C. K., Liao, K. C., Chen, W. K., Lee, M. C., Chen, W. H. and Lee, Y. Y., Appl. Phys. Lett. 77, 2819 (2000).Google Scholar
12. Yoshida, S., Kimura, T., Wu, J., Kikawa, J., Onabe, K. and Shiraki, Y., MRS Internet J. Nitride Semicond. Res. 5S1, W3.41 (2000).Google Scholar
13. Iwata, K., Asahi, H., Asami, K., Kuroiwa, R. and Gonda, S.-I., Jpn. J. Appl. Phys. 37, 1436 (1998).Google Scholar
14. Seong, T.-Y., Bae, I.-T., Zhao, Y. and Tu, C. W., MRS Internet J. Nitride. Semicond. Res. 4S1, G3.11 (1999).Google Scholar
15. Morkoç, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M. J., J. Appl. Phys. 76, 1363 (1994).Google Scholar
16. Gherasimova, M., PhD. Thesis Yale University, 2002.Google Scholar
17. Gherasimova, M., Wheeler, R. G., Guido, L. J., Chang, K. L. and Hsieh, K. C. (in preparation).Google Scholar
18. Moss, T. S., Proc. Phys. Soc. B 63, 167 (1950).Google Scholar
19. Hervé, P. and Vandamme, L. K. J., Infrared Phys. Technol. 35, 609 (1994).Google Scholar
20. Aourag, H., Bouhafs, B. and Certier, M., Phys. Stat. Sol. (b) 201, 117 (1997).Google Scholar
21. Schlenker, D., Miyamoto, T., Pan, Z., Koyama, F. and Iga, K., J. Cryst. Growth 196, 67 (1999)Google Scholar