Hostname: page-component-788cddb947-rnj55 Total loading time: 0 Render date: 2024-10-19T04:52:57.576Z Has data issue: false hasContentIssue false

Application of the Amphoteric Native Defect Model to Diffusion and Activation of Shallow Impurities in III-V Semiconductors

Published online by Cambridge University Press:  22 February 2011

W. Walukiewicz*
Affiliation:
Materials Sciences Division, Lawrence Berkeley Laboratory, University of California at Berkeley, Berkeley, CA, 94720
Get access

Abstract

The effects of heavy doping on the formation of charged point defects are considered. It is shown that the Fermi level dependent part of the formation energy of highly localized defects can be determined using a universal energy reference, common to all III-V compound semiconductors. The concept is used to analyze the electrical activity and diffusion of dopant impurities in these compounds. We present model calculations which explain the correlation between the maximum hole concentrations and the acceptor impurity diffusion in InP and in InGaAs alloys, doped with group II acceptors. The calculations account for the redistribution of the impurity atoms at the lattice matched InP/InGaAs interface. It is also demonstrated that an abrupt enhancement of the Fermi level induced defect formation is observed at the onset of highly degenerate statistics in heavily doped semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Enquist, P. M., Hutchby, J. A., and Lyon, T. J. de, J. Appl. Phys. 63, 4485 (1988).Google Scholar
2. Hobson, W. S., Pearton, J. J., and Jordan, A. S., Appl. Phys. Lett. 56, 1251 (1990).Google Scholar
3. Kurishima, K., Kobayashi, T., and Gosele, U., Appl. Phys. Lett. 60, 2496 (1992).Google Scholar
4. Schubert, E. F., Kuo, J.M., Kopf, R.F., Luftman, H.S., Hopkins, L.C., and Sauer, N.J., J. Appl. Phys. 67, 1969 (1990).Google Scholar
5. Deppe, D. G., Appl. Phys. Lett. 56, 370 (1990).Google Scholar
6. Baraff, G. A. and Schluter, M. A., Phys. Rev. Lett. 55, 1327 (1985).Google Scholar
7. Walukiewicz, W., Appl. Phys. Lett. 54,2094 (1989).Google Scholar
8. Zhang, S. B. and Northrup, J.E., Phys. Rev. Lett. 67, 2339 (1991).Google Scholar
9. Bhargava, R. N., J. Cryst. Growth 86, 873 (1988).Google Scholar
10. Chadi, D. J. and Chang, K. J., Appl. Phys. Lett. 55, 575 (1989).Google Scholar
11. Walle, C. G. Van de, Laks, D. B., Neumark, G. F., and Pantelides, S. T., Phys. Rev. B 47, 9425 (1993).Google Scholar
12. Tan, T. Y., Gösele, U., and Yu, S., Crti. Rev. Solid State Mat. Sci. vol. 17, 47 (1991).Google Scholar
13. Deppe, D. G. and Holonyak, N. Jr., J. Appl. Phys. 66, R93 (1988).Google Scholar
14. Robinson, H. G., Deal, M. D., Amaratunga, G., Griffin, P. B., Stevenson, D. A., Plummer, J. D., J. Appl. Phys. 71, 2615 (1992).Google Scholar
15. Walukiewicz, W., J. Vac. Sci. Technol. B6, 1257 (1988).Google Scholar
16. Tokumitsu, E., Japan. J. Appl. Phys. 29, L698 (1990).Google Scholar
17. Longini, R. L. and Greene, R. F., Phys. Rev. 102, 992 (1956).Google Scholar
18. Kröger, F. A. and Vink, H. J., in Solid State Physics vol. III, 307 (1956).Google Scholar
19. Mandel, G., Phys. Rev. 134, A1073 (1964).Google Scholar
20. Walukiewicz, W., J. Vac. Sci. Technol. BS, 1062 (1987).Google Scholar
21. Walukiewicz, W., Phys. Rev. B 37, 4760 (1988).Google Scholar
22. Langer, J. M. and Heinrich, H., Phys. Rev. Lett. 55, 1414 (1985).Google Scholar
23. Zunger, A., Ann. Rev. Mat. Sci. 15, 411 (1985).Google Scholar
24. Nolte, D. D., Walukiewicz, W., Haller, E. E., Phys. Rev. Lett. 59, 501 (1987).Google Scholar
25. Hasegawa, H. and Ohno, H., J. Vac. Sci. Technol. B 4, 1130 (1986).Google Scholar
26. Wolk, J. A., Walukiewicz, W., Thewalt, M. L. W., and Hailer, E. E., Phys. Rev. Lett. 68, 3619 (1992).Google Scholar
27. Chadi, D. J. and Chang, K.J., Phys. Rev. Lett. 61, 873 (1988).Google Scholar
28. Ourmazd, A., Baumann, F. H., Bode, M., Kim, Y., and Rentschler, J. A., Proc. Intern. Conf. on Defects in Semiconductors, Mat. Sci. Forum Vol. 83–87, 1339 (1992).Google Scholar
29. Chan, L. Y., Yu, K.M., Ben-Tzur, M., Haller, E. E., Jaklevic, J. M., Walukiewicz, W., and Hanson, C. M., J. Appl. Phys. 69, 2998 (1991).Google Scholar
30. Astles, M. G., Smith, F. G. H., and Williams, E. W., J. Electrochem. Soc. 120, 1750 (1973).Google Scholar
31. Schubert, E. F., Gilmer, G. M., Kopf, R. F., and Luftman, H. S., Phys. Rev. B 46, 15078 (1992).Google Scholar
32. Panish, M. B., Hamm, R. A., Rifter, D., Luftman, H. S., and Cotell, C. M., J. Cryst. Growth 112, 343 (1991).Google Scholar
33. Gösele, U. and Morehead, F., J. Appl. Phys. 52, 4617 (1981).Google Scholar
34. Walukiewicz, W., Yu, K.M., Chan, L.Y., Jaklevic, J., and Haller, E.E., Proc. 16th Intern. Conf. on Defects in Semiconductors, Mat. Sci. Forum Vols. 83–87, 941 (1992).Google Scholar
35. Yu, K. M., Walukiewicz, W., Chan, L. Y., Leon, R., Haller, E. E., and Jaklevic, J. M., J. Appl. Phys., to be published.Google Scholar
36. Chadi, D. J., Proc. 16th Intern. Conf. on Defects in Semiconductors, Mat. Sci. Forum. Vols. 83–87, 447 (1992).Google Scholar
37. Dildey, F., Amann, M.-C., and Treichler, R., Japan. J. Appl. Phys. 29, 810 (1990).Google Scholar
38. Häussler, W., Walter, J. W., and Müller, J., Mat. Res. Soc. Symp. Proc. Vol. 147, 333 (1989).Google Scholar