Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T04:30:42.275Z Has data issue: false hasContentIssue false

Application of Spectroscopic Ellipsometry and Infrared Spectroscopy for the Real-Time Control and Characterization of a-Si:H Growth in a-Si:H/c-Si Heterojunction Solar Cells

Published online by Cambridge University Press:  01 February 2011

Hiroyuki Fujiwara
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Michio Kondo
Affiliation:
Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

We have demonstrated real-time process control of a-Si:H growth in an a-Si:H/c-Si heterojunction solar cell by spectroscopic ellipsometry (SE). Accurate thickness control of a-Si:H p-i layers with a precision better than ± Å has been realized by this technique. From real-time attenuated total reflection spectroscopy (ATR), we find the formation of a porous interface layer with a maximum SiH2-hydrogen content of 27 at.% at the a-Si:H/c-Si interface, although a rather high conversion efficiency of 14.6 % has been obtained in the solar cell. We found that an optimum i-layer thickness for the a-Si:H/c-Si solar cells is consistent with the thickness at which the a-Si:H i-layer growth reaches a steady state after the H-rich interface-layer formation. We have applied SE further to determine the dielectric functions of In2O3:Sn and ZnO:Ga with different carrier concentrations. From the dielectric function analysis, the effective mass m is extracted. We find linear increases in m as the carrier concentration of In2O3:Sn and ZnO:Ga increases. The validity of our analyses has been confirmed from excellent agreement between carrier concentrations determined by SE and Hall measurements. The construction of the optical database further enabled us to calculate a reflectance spectrum of the a-Si:H/c-Si solar cell accurately.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., Uchihashi, K., Nakamura, N., Kiyama, S., and Oota, O., Prog. Photovolt: Res. Appl. 8, 503 (2000).10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G3.0.CO;2-G>Google Scholar
2 Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., and Kuwano, Y., Jpn. J. Appl. Phys. 31, 3518 (1992).10.1143/JJAP.31.3518Google Scholar
3 Fujiwara, H., Kondo, M., and Matsuda, A., J. Appl. Phys. 91, 4181 (2002).10.1063/1.1457535Google Scholar
4 Fujiwara, H., Koh, J., Rovira, P. I., and Collins, R. W., Phys. Rev. B 61, 10832 (2000).10.1103/PhysRevB.61.10832Google Scholar
5 Fujiwara, H. and Kondo, M., Appl. Phys. Lett. 86, 32112 (2005).10.1063/1.1850612Google Scholar
6 Fujiwara, H. and Kondo, M., Phys. Rev. B 71, 75109 (2005).10.1103/PhysRevB.71.075109Google Scholar
7 Forcht, K., Gombert, A., Joerger, R., and Kohl, M., Thin Solid Films 302, 43 (1997).10.1016/S0040-6090(96)09555-7Google Scholar
8 Rovira, P. I. and Collins, R. W., J. Appl. Phys. 85, 2015 (1999).10.1063/1.369496Google Scholar
9 An, I., Nguyen, H. V., Nguyen, N. V., and Collins, R. W., Phys. Rev. Lett. 65, 2274 (1990).10.1103/PhysRevLett.65.2274Google Scholar
10 Perrin, J., Takeda, Y., Hirano, N., Takeuchi, Y., and Matsuda, A., Surf. Sci. 210, 114 (1989).10.1016/0039-6028(89)90106-4Google Scholar
11 Fujiwara, H., Koh, J., Lee, Y., Wronski, C. R., and Collins, R. W., J. Appl. Phys. 84, 2278 (1998).10.1063/1.368361Google Scholar
12 Fujiwara, H., Toyoshima, Y., Kondo, M., and Matsuda, A., Phys. Rev. B 60, 13598 (1999).10.1103/PhysRevB.60.13598Google Scholar
13 Fujiwara, H., Kondo, M., and Matsuda, A., Appl. Phys. Lett. 82, 1227 (2003).10.1063/1.1557315Google Scholar
14 Kitagawa, T., Kondo, M., and Matsuda, A., Appl. Surf. Sci. 159-160, 30 (2000).10.1016/S0169-4332(00)00081-7Google Scholar
15For a review, see Hamberg, I. and Granqvist, C. G., J. Appl. Phys. 60, R123 (1986).10.1063/1.337534Google Scholar
16 Shanthi, E., Banerjee, A., Dutta, V., and Chopra, K. L., J. Appl. Phys. 53, 1615 (1982).10.1063/1.330619Google Scholar
17For a review, see Jarzebski, Z. M., Phys. Stat. Sol. A 71, 13 (1982).10.1002/pssa.2210710102Google Scholar
18 Ellmer, K., J. Phys. D: Appl. Phys. 34, 3097 (2001).10.1088/0022-3727/34/21/301Google Scholar
19 Singh, A. V., Mehra, R. M., Yoshida, A., and Wakahara, A., J. Appl. Phys. 95, 3640 (2004).10.1063/1.1667259Google Scholar
20 Minami, T., Sato, H., Ohashi, K., Tomofuji, T. and Takata, S., J. Cryst. Growth 117, 370 (1992).10.1016/0022-0248(92)90778-HGoogle Scholar