Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-15T15:24:42.171Z Has data issue: false hasContentIssue false

Application of Controlled Interfacial Pore Structures to Kinetic Studies in Alumina

Published online by Cambridge University Press:  26 February 2011

J. Rödel
Affiliation:
Department of Materials Science and Mineral Engineering and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
A. M. Glaeser
Affiliation:
Department of Materials Science and Mineral Engineering and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

The application of controlled-geometry interfacial pore structures to fundamental kinetic studies in alumina is described. Results from studies of the morphological stability of high aspect ratio pore channels, crack healing, pore coarsening and pore elimination in sapphire are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Rödel, J. and Glaeser, A. M., J. Am. Ceram. Soc. 70, (8), C172 (1987).CrossRefGoogle Scholar
2. Rödel, J. and Glaeser, A. M., unpublished research.Google Scholar
3. Rödel, J., PhD thesis, University of California, Berkeley, 1988.Google Scholar
4. Burger, K., Mader, W. and Riuhle, M., Ultramicroscopy, 22, 1 1987.Google Scholar
5. Kahn, M., Dalzell, A. and Kovel, B., Adv. Ceram. Mat., 2, (4), 836 (1987).Google Scholar
6. Cannon, R. M., Oh, T. S., Rödel, J., Glaeser, A. M. and Ritchie, R. O., Lawrence Berkeley Laboratory (LBL) Report No. 24407, 1988.Google Scholar
7. Budworth, D. W., Trans. Brit. Ceram. Soc., 69, (1)), 29 (1970).Google Scholar
8. Yen, C. F. and Coble, R. L., J. Am. Ceram. Soc., 55, (10)), 507 (1972).Google Scholar
9. Maruyama, O. and Komatsu, W., Ceram. Inter., 5, (2)), 51 (1979).Google Scholar
10. Gupta, T. K., J. Am. Ceram. Soc., 61, (5-6), 191 (1978).CrossRefGoogle Scholar
11. Carter, W. C. and Glaeser, A. M., Acta Metall., 35, (1)), 237 (1987).Google Scholar
12. Nichols, F. A., J. Mater. Sci., 11, (6)), 1077 (1976).CrossRefGoogle Scholar
13. Cahn, J. W., Scripta Met., 13, 1069 1979.Google Scholar
14. Nichols, F. A. and Mullins, W. W., Trans A.I.M.E., 233, (10)), 1840 (1965).Google Scholar
15. Evans, A. G. and Charles, E. A., Acta Metall., 25, 919 1977.CrossRefGoogle Scholar
16. Gupta, T. K., in Structure and Properties of MgO and Al2O3 Ceramics, edited by Kingery, W.D., (The American Ceramic Society, Columbus OH, 1984) pp. 750766.Google Scholar
17. Rodel, J. and Glaeser, A. M., LBL Report No. 24970, 1988.Google Scholar